[1] Allegretto, W., Barone-Adesi, G., Dinenis, E., Lin, Y., Sorwar, G.: A new approach to check the free boundary of single factor interest rate put option. Finance 20 (1999), 153-168.
[2] Allegretto, W., Barone-Adesi, G., Elliott, R. J.:
Numerical evaluation of the critical price and American options. European J. Finance 1 (1995), 69-78.
DOI 10.1080/13518479500000009
[4] Allegretto, W., Lin, Y., Yang, H.:
A fast and highly accurate numerical method for the evaluation of American options. Dyn. Contin. Discrete Impuls. Syst., Ser. B Appl. Algorithms 8 (2001), 127-138.
MR 1824289 |
Zbl 1108.91034
[5] Badea, L., Wang, J.: A new formulation for the valuation of American options. I. Solution uniqueness. II. Solution existence. Anal. Sci. Comput. (Eun-Jae Park, Jongwoo Lee, eds.) 5 (2000), 3-16, 17-33.
[9] Brennan, M. J., Schwartz, E. S.:
The valuation of American put options. J. Finance 32 (1997), 449-462.
DOI 10.2307/2326779
[10] Broadie, M., Detemple, J.:
American option valuation: New bounds, approximations, and a comparison of existing methods. Rev. Financial Studies 9 (1996), 1211-1250.
DOI 10.1093/rfs/9.4.1211
[12] Duffy, D. J.:
Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. John Wiley & Sons Hoboken (2006).
MR 2286409
[14] Elliott, C. M., Ockendon, J. R.:
Weak and Variational Methods for Moving Boundary Problems. Pitman Boston-London-Melbourne (1982).
MR 0650455 |
Zbl 0476.35080
[15] Fetter, A.:
$L^{\infty}$-error estimate for an approximation of a parabolic variational inequality. Numer. Math. 50 (1987), 557-565.
DOI 10.1007/BF01408576 |
MR 0880335
[17] Han, W., Chen, X.:
An Introduction to Variational Inequalities: Elementary Theory, Numerical Analysis and Applications. Higher Education Press Beijing (2007).
MR 2791918
[18] Huang, J., Subrahmanyam, M. C., Yu, G. G.:
Pricing and hedging American options: A recursive integration method. Rev. Financial Studies 9 (1996), 277-300.
DOI 10.1093/rfs/9.1.277
[19] Hull, J.: Option, Futures and Other Derivative Securities, 2nd edition. Prentice Hall New Jersey (1993).
[22] Jiang, L., Dai, M.:
Convergence of the explicit difference scheme and binomial tree method for American options. J. Comput. Math. 22 (2004), 371-380.
MR 2056293
[23] Jiang, L.:
Mathematical Modeling and Methods of Options Pricing. Higher Education Press Beijing (2003).
MR 1318688
[24] Johnson, H. E.:
An analytic approximation for the American put price. J. Financial and Quantitative Anal. 18 (1983), 141-148.
DOI 10.2307/2330809
[25] Křížek, M., Neittaanmäki, P.:
Bibliography on superconvergence. In: Proc. Conf. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, Lecture Notes in Pure and Appl. Math. 196 M. Křížek et al. Marcel Dekker New York (1998), 315-348.
MR 1602730
[27] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers Baoding (1996), Chinese.
[29] Liu, M., Wang, J.: Pricing American options by domain decomposition methods. In: Iterative Methods in Scientific Computation J. Wang, H. Allen, H. Chen, L. Mathew IMACS Publication (1998).
[30] Liu, T., Zhang, P.:
Numerical methods for option pricing problems. J. Syst. Sci. & Math. Sci. 12 (2003), 12-20.
MR 2034582
[32] MacMillan, L. W.: Analytic approximation for the American put option. Adv. in Futures and Options Res. 1 (1986), 1149-1159.
[33] McKean, H. P.: Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics. Industrial Management Rev. 6 (1965), 32-39.
[35] Sanchez, A. M., Arcangéli, R.:
Estimations des erreurs de meilleure approximation polynomiale et d'interpolation de Lagrange dans les espaces de Sobolev d'ordre non entier. Numer. Math. 45 (1984), 301-321 French.
DOI 10.1007/BF01389473 |
MR 0766187 |
Zbl 0587.41018
[36] Topper, J.: Financial Engineering with Finite Elements. John Wiley & Sons Hoboken (2005).
[38] Vuik, C.:
An $L^2$-error estimate for an approximation of the solution of a parabolic variational inequality. Numer. Math. 57 (1990), 453-471.
DOI 10.1007/BF01386423 |
MR 1063805
[39] Wilmott, P., Dewynne, J., Howison, S.:
Option Pricing: Mathematical Models and Computation. Financial Press Oxford (1995).
MR 1357666 |
Zbl 0844.90011
[40] Zhang, T.:
The numerical methods for American options pricing. Acta Math. Appl. Sin. 25 (2002), 113-122.
MR 1926728