Title:
|
Superconvergence estimates of finite element methods for American options (English) |
Author:
|
Lin, Qun |
Author:
|
Liu, Tang |
Author:
|
Zhang, Shuhua |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
181-202 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. {\it 39} (2001), 834--857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation postprocessing analysis technique, we present sharp $L^2$-, $L^{\infty }$-norm error estimates and an $H^1$-norm superconvergence estimate for this finite element method. As a by-product, the global superconvergence result can be used to generate an efficient a posteriori error estimator. (English) |
Keyword:
|
American options |
Keyword:
|
variational inequality |
Keyword:
|
finite element methods |
Keyword:
|
optimal and superconvergent estimates |
Keyword:
|
interpolation postprocessing |
Keyword:
|
a posteriori error estimators |
MSC:
|
65K10 |
MSC:
|
65K15 |
MSC:
|
65M12 |
MSC:
|
65M60 |
MSC:
|
90A09 |
MSC:
|
91G10 |
MSC:
|
91G20 |
MSC:
|
91G60 |
idZBL:
|
Zbl 1212.65252 |
idMR:
|
MR2530538 |
DOI:
|
10.1007/s10492-009-0012-x |
. |
Date available:
|
2010-07-20T12:56:28Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140359 |
. |
Reference:
|
[1] Allegretto, W., Barone-Adesi, G., Dinenis, E., Lin, Y., Sorwar, G.: A new approach to check the free boundary of single factor interest rate put option.Finance 20 (1999), 153-168. |
Reference:
|
[2] Allegretto, W., Barone-Adesi, G., Elliott, R. J.: Numerical evaluation of the critical price and American options.European J. Finance 1 (1995), 69-78. 10.1080/13518479500000009 |
Reference:
|
[3] Allegretto, W., Lin, Y., Yang, H.: Finite element error estimates for a nonlocal problem in American option valuation.SIAM J. Numer. Anal. 39 (2001), 834-857. Zbl 0996.91064, MR 1860447, 10.1137/S0036142900370137 |
Reference:
|
[4] Allegretto, W., Lin, Y., Yang, H.: A fast and highly accurate numerical method for the evaluation of American options.Dyn. Contin. Discrete Impuls. Syst., Ser. B Appl. Algorithms 8 (2001), 127-138. Zbl 1108.91034, MR 1824289 |
Reference:
|
[5] Badea, L., Wang, J.: A new formulation for the valuation of American options. I. Solution uniqueness. II. Solution existence.Anal. Sci. Comput. (Eun-Jae Park, Jongwoo Lee, eds.) 5 (2000), 3-16, 17-33. |
Reference:
|
[6] Barone-Adesi, G., Whaley, R. E.: Efficient analytic approximation of American option values.J. Finance 42 (1987), 301-320. 10.1111/j.1540-6261.1987.tb02569.x |
Reference:
|
[7] Black, F., Scholes, M.: The pricing of options and corporate liabilities.J. Polit. Econ. 81 (1973), 637-659. Zbl 1092.91524, 10.1086/260062 |
Reference:
|
[8] Boyle, P., Broadie, M., Glasserman, P.: Monte Carlo methods for security pricing.J. Econ. Dyn. Control 21 (1997), 1267-1321. Zbl 0901.90007, MR 1470283, 10.1016/S0165-1889(97)00028-6 |
Reference:
|
[9] Brennan, M. J., Schwartz, E. S.: The valuation of American put options.J. Finance 32 (1997), 449-462. 10.2307/2326779 |
Reference:
|
[10] Broadie, M., Detemple, J.: American option valuation: New bounds, approximations, and a comparison of existing methods.Rev. Financial Studies 9 (1996), 1211-1250. 10.1093/rfs/9.4.1211 |
Reference:
|
[11] Crank, J.: Free and Moving Boundary Problems.Clarendon Press Oxford (1984). Zbl 0547.35001, MR 0776227 |
Reference:
|
[12] Duffy, D. J.: Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach.John Wiley & Sons Hoboken (2006). MR 2286409 |
Reference:
|
[13] Eaves, B. C.: On the basic theorem of complementarity.Math. Program. 1 (1971), 68-75. Zbl 0227.90044, MR 0287901, 10.1007/BF01584073 |
Reference:
|
[14] Elliott, C. M., Ockendon, J. R.: Weak and Variational Methods for Moving Boundary Problems.Pitman Boston-London-Melbourne (1982). Zbl 0476.35080, MR 0650455 |
Reference:
|
[15] Fetter, A.: $L^{\infty}$-error estimate for an approximation of a parabolic variational inequality.Numer. Math. 50 (1987), 557-565. MR 0880335, 10.1007/BF01408576 |
Reference:
|
[16] Feistauer, M.: On the finite element approximation of functions with noninteger derivatives.Numer. Funct. Anal. Optimization 10 (1989), 91-110. Zbl 0668.65008, MR 0978805, 10.1080/01630568908816293 |
Reference:
|
[17] Han, W., Chen, X.: An Introduction to Variational Inequalities: Elementary Theory, Numerical Analysis and Applications.Higher Education Press Beijing (2007). MR 2791918 |
Reference:
|
[18] Huang, J., Subrahmanyam, M. C., Yu, G. G.: Pricing and hedging American options: A recursive integration method.Rev. Financial Studies 9 (1996), 277-300. 10.1093/rfs/9.1.277 |
Reference:
|
[19] Hull, J.: Option, Futures and Other Derivative Securities, 2nd edition.Prentice Hall New Jersey (1993). |
Reference:
|
[20] Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American options.Acta Appl. Math. 21 (1990), 263-289. Zbl 0714.90004, MR 1096582, 10.1007/BF00047211 |
Reference:
|
[21] Jiang, L., Dai, M.: Convergence of binomial tree methods for European/American path-dependent options.SIAM J. Numer. Anal. 42 (2004), 1094-1109. Zbl 1159.91392, MR 2113677, 10.1137/S0036142902414220 |
Reference:
|
[22] Jiang, L., Dai, M.: Convergence of the explicit difference scheme and binomial tree method for American options.J. Comput. Math. 22 (2004), 371-380. MR 2056293 |
Reference:
|
[23] Jiang, L.: Mathematical Modeling and Methods of Options Pricing.Higher Education Press Beijing (2003). MR 1318688 |
Reference:
|
[24] Johnson, H. E.: An analytic approximation for the American put price.J. Financial and Quantitative Anal. 18 (1983), 141-148. 10.2307/2330809 |
Reference:
|
[25] Křížek, M., Neittaanmäki, P.: Bibliography on superconvergence.In: Proc. Conf. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, Lecture Notes in Pure and Appl. Math. 196 M. Křížek et al. Marcel Dekker New York (1998), 315-348. MR 1602730 |
Reference:
|
[26] Kwok, Y. K.: Mathematical Models of Financial Derivatives.Springer Singapore (1998). Zbl 0931.91018, MR 1645143 |
Reference:
|
[27] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers Baoding (1996), Chinese. |
Reference:
|
[28] Lin, Q., Zhang, S.: An immediate analysis for global superconvergence for integrodifferential equations.Appl. Math. 42 (1997), 1-21. Zbl 0902.65090, MR 1426677, 10.1023/A:1022264125558 |
Reference:
|
[29] Liu, M., Wang, J.: Pricing American options by domain decomposition methods.In: Iterative Methods in Scientific Computation J. Wang, H. Allen, H. Chen, L. Mathew IMACS Publication (1998). |
Reference:
|
[30] Liu, T., Zhang, P.: Numerical methods for option pricing problems.J. Syst. Sci. & Math. Sci. 12 (2003), 12-20. MR 2034582 |
Reference:
|
[31] Marcozzi, M. D.: On the approximation of optimal stopping problems with application to financial mathematics.SIAM J. Sci. Comput. 22 (2001), 1865-1884. Zbl 0980.60047, MR 1813301, 10.1137/S1064827599364647 |
Reference:
|
[32] MacMillan, L. W.: Analytic approximation for the American put option.Adv. in Futures and Options Res. 1 (1986), 1149-1159. |
Reference:
|
[33] McKean, H. P.: Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics.Industrial Management Rev. 6 (1965), 32-39. |
Reference:
|
[34] Merton, R. C.: Theory of rational option pricing.Bell J. Econom. and Management Sci. 4 (1973), 141-183. MR 0496534, 10.2307/3003143 |
Reference:
|
[35] Sanchez, A. M., Arcangéli, R.: Estimations des erreurs de meilleure approximation polynomiale et d'interpolation de Lagrange dans les espaces de Sobolev d'ordre non entier.Numer. Math. 45 (1984), 301-321 French. Zbl 0587.41018, MR 0766187, 10.1007/BF01389473 |
Reference:
|
[36] Topper, J.: Financial Engineering with Finite Elements.John Wiley & Sons Hoboken (2005). |
Reference:
|
[37] Underwood, R., Wang, J.: An integral representation and computation for the solution of American options.Nonlinear. Anal., Real World Appl. 3 (2002), 259-274. Zbl 1011.91049, MR 1893977, 10.1016/S1468-1218(01)00028-1 |
Reference:
|
[38] Vuik, C.: An $L^2$-error estimate for an approximation of the solution of a parabolic variational inequality.Numer. Math. 57 (1990), 453-471. MR 1063805, 10.1007/BF01386423 |
Reference:
|
[39] Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation.Financial Press Oxford (1995). Zbl 0844.90011, MR 1357666 |
Reference:
|
[40] Zhang, T.: The numerical methods for American options pricing.Acta Math. Appl. Sin. 25 (2002), 113-122. MR 1926728 |
. |