Previous |  Up |  Next

Article

Keywords:
least-squares mixed finite element method; non-standard mixed finite element method; superconvergence; supercloseness
Summary:
We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive than applying the least-squares mixed finite element method.
References:
[1] Barrios, T. P., Gatica, G. N.: An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses. J. Comput. Appl. Math. 200 (2007), 653-676. DOI 10.1016/j.cam.2006.01.017 | MR 2289241 | Zbl 1112.65106
[2] Bochev, P. B., Gunzburger, M. D.: Finite element methods of least-squares type. SIAM Rev. 40 (1998), 789-837. DOI 10.1137/S0036144597321156 | MR 1659689 | Zbl 0914.65108
[3] Brandts, J. H.: Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68 (1994), 311-324. DOI 10.1007/s002110050064 | MR 1313147 | Zbl 0823.65103
[4] Brandts, J. H., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489-505. DOI 10.1093/imanum/23.3.489 | MR 1987941 | Zbl 1042.65081
[5] Brandts, J. H., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27-36. MR 2124141 | Zbl 1072.65137
[6] Brandts, J. H., Chen, Y. P.: An alternative to the least-squares mixed finite element method for elliptic problems. In: Numerical Mathematics and Advanced Applications M. Feistauer, V. Dolejší, P. Knobloch, K. Najzar Springer (2004), 169-175. DOI 10.1007/978-3-642-18775-9_14 | MR 2121365 | Zbl 1056.65110
[7] Brandts, J. H., Chen, Y. P.: Superconvergence of least-squares mixed finite elements. Int. J. Numer. Anal. Model. 3 (2006), 303-310. MR 2237884 | Zbl 1096.65108
[8] Brandts, J. H., Chen, Y. P., Yang, J.: A note on least-squares mixed finite elements in relation to standard and mixed finite elements. IMA J. Numer. Anal. 26 (2006), 779-789. DOI 10.1093/imanum/dri048 | MR 2269196 | Zbl 1106.65102
[9] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Franc. Automat. Inform. Rech. Operat. 8, R-2 (1974), 129-151. MR 0365287 | Zbl 0338.90047
[10] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Berlin-Heidelberg-New York (1991). MR 1115205 | Zbl 0788.73002
[11] Cai, Z., Lazarov, R., Manteuffel, T. A., McCormick, S. F.: First-order system least squares for second-order partial differential equations: Part I. SIAM J. Numer. Anal. 31 (1994), 1785-1799. DOI 10.1137/0731091 | MR 1302685
[12] Carey, G. F., Pehlivanov, A. I.: Local error estimation and adaptive remeshing scheme for least-squares mixed finite elements. Comput. Methods Appl. Mech. Eng. 150 (1997), 125-131. DOI 10.1016/S0045-7825(97)00098-4 | MR 1487940 | Zbl 0907.65101
[13] Carey, G. F., Pehlivanov, A. I., Shen, Y., Bose, A., Wang, K. C.: Least-squares finite elements for fluid flow and transport. Int. J. Numer. Methods Fluids 27 (1998), 97-107. DOI 10.1002/(SICI)1097-0363(199801)27:1/4<97::AID-FLD652>3.0.CO;2-2 | MR 1602155 | Zbl 0904.76043
[14] Ciarlet, P.: The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics 40. 2nd Edition. SIAM Philadelphia (2002). MR 1930132
[15] Křížek, M., Neittaanmäki, P., Stenberg, R.: Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lect. Notes Pure Appl. Math., 96. Marcel Dekker New York (1998). MR 1602809
[16] Pehlivanov, A. I., Carey, G. F.: Error estimates for least-squares mixed finite elements. RAIRO, Modélisation Math. Anal. Numér. 28 (1994), 499-516. DOI 10.1051/m2an/1994280504991 | MR 1295584 | Zbl 0820.65065
[17] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D.: Least-squares mixed finite elements for second order elliptic problems. SIAM J. Numer. Anal. 31 (1994), 1368-1377. DOI 10.1137/0731071 | MR 1293520 | Zbl 0806.65108
[18] Pehlivanov, A. I., Carey, G. F., Vassilevski, P. S.: Least-squares mixed finite element methods for non-selfadjoint elliptic problems. I: Error estimates. Numer. Math. 72 (1996), 501-522. DOI 10.1007/s002110050179 | MR 1376110 | Zbl 0878.65096
[19] Raviart, P. A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems. Lect. Notes Math. 606 (1977), 292-315. DOI 10.1007/BFb0064470 | MR 0483555 | Zbl 0362.65089
[20] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods. Lect. Notes Math. 1605. Springer Berlin (1995). MR 1439050
Partner of
EuDML logo