[5] Brandts, J. H., Křížek, M.:
Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27-36.
MR 2124141 |
Zbl 1072.65137
[6] Brandts, J. H., Chen, Y. P.:
An alternative to the least-squares mixed finite element method for elliptic problems. In: Numerical Mathematics and Advanced Applications M. Feistauer, V. Dolejší, P. Knobloch, K. Najzar Springer (2004), 169-175.
DOI 10.1007/978-3-642-18775-9_14 |
MR 2121365 |
Zbl 1056.65110
[7] Brandts, J. H., Chen, Y. P.:
Superconvergence of least-squares mixed finite elements. Int. J. Numer. Anal. Model. 3 (2006), 303-310.
MR 2237884 |
Zbl 1096.65108
[9] Brezzi, F.:
On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Franc. Automat. Inform. Rech. Operat. 8, R-2 (1974), 129-151.
MR 0365287 |
Zbl 0338.90047
[10] Brezzi, F., Fortin, M.:
Mixed and hybrid finite element methods. Springer Berlin-Heidelberg-New York (1991).
MR 1115205 |
Zbl 0788.73002
[11] Cai, Z., Lazarov, R., Manteuffel, T. A., McCormick, S. F.:
First-order system least squares for second-order partial differential equations: Part I. SIAM J. Numer. Anal. 31 (1994), 1785-1799.
DOI 10.1137/0731091 |
MR 1302685
[13] Carey, G. F., Pehlivanov, A. I., Shen, Y., Bose, A., Wang, K. C.:
Least-squares finite elements for fluid flow and transport. Int. J. Numer. Methods Fluids 27 (1998), 97-107.
DOI 10.1002/(SICI)1097-0363(199801)27:1/4<97::AID-FLD652>3.0.CO;2-2 |
MR 1602155 |
Zbl 0904.76043
[14] Ciarlet, P.:
The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics 40. 2nd Edition. SIAM Philadelphia (2002).
MR 1930132
[15] Křížek, M., Neittaanmäki, P., Stenberg, R.:
Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lect. Notes Pure Appl. Math., 96. Marcel Dekker New York (1998).
MR 1602809
[17] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D.:
Least-squares mixed finite elements for second order elliptic problems. SIAM J. Numer. Anal. 31 (1994), 1368-1377.
DOI 10.1137/0731071 |
MR 1293520 |
Zbl 0806.65108
[18] Pehlivanov, A. I., Carey, G. F., Vassilevski, P. S.:
Least-squares mixed finite element methods for non-selfadjoint elliptic problems. I: Error estimates. Numer. Math. 72 (1996), 501-522.
DOI 10.1007/s002110050179 |
MR 1376110 |
Zbl 0878.65096
[20] Wahlbin, L. B.:
Superconvergence in Galerkin Finite Element Methods. Lect. Notes Math. 1605. Springer Berlin (1995).
MR 1439050