Title:
|
Analysis of a non-standard mixed finite element method with applications to superconvergence (English) |
Author:
|
Brandts, Jan H. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
225-235 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive than applying the least-squares mixed finite element method. (English) |
Keyword:
|
least-squares mixed finite element method |
Keyword:
|
non-standard mixed finite element method |
Keyword:
|
superconvergence |
Keyword:
|
supercloseness |
MSC:
|
35J25 |
MSC:
|
65N12 |
MSC:
|
65N15 |
MSC:
|
65N30 |
idZBL:
|
Zbl 1212.65441 |
idMR:
|
MR2530540 |
DOI:
|
10.1007/s10492-009-0014-8 |
. |
Date available:
|
2010-07-20T12:59:44Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140361 |
. |
Reference:
|
[1] Barrios, T. P., Gatica, G. N.: An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses.J. Comput. Appl. Math. 200 (2007), 653-676. Zbl 1112.65106, MR 2289241, 10.1016/j.cam.2006.01.017 |
Reference:
|
[2] Bochev, P. B., Gunzburger, M. D.: Finite element methods of least-squares type.SIAM Rev. 40 (1998), 789-837. Zbl 0914.65108, MR 1659689, 10.1137/S0036144597321156 |
Reference:
|
[3] Brandts, J. H.: Superconvergence and a posteriori error estimation for triangular mixed finite elements.Numer. Math. 68 (1994), 311-324. Zbl 0823.65103, MR 1313147, 10.1007/s002110050064 |
Reference:
|
[4] Brandts, J. H., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489 |
Reference:
|
[5] Brandts, J. H., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27-36. Zbl 1072.65137, MR 2124141 |
Reference:
|
[6] Brandts, J. H., Chen, Y. P.: An alternative to the least-squares mixed finite element method for elliptic problems.In: Numerical Mathematics and Advanced Applications M. Feistauer, V. Dolejší, P. Knobloch, K. Najzar Springer (2004), 169-175. Zbl 1056.65110, MR 2121365, 10.1007/978-3-642-18775-9_14 |
Reference:
|
[7] Brandts, J. H., Chen, Y. P.: Superconvergence of least-squares mixed finite elements.Int. J. Numer. Anal. Model. 3 (2006), 303-310. Zbl 1096.65108, MR 2237884 |
Reference:
|
[8] Brandts, J. H., Chen, Y. P., Yang, J.: A note on least-squares mixed finite elements in relation to standard and mixed finite elements.IMA J. Numer. Anal. 26 (2006), 779-789. Zbl 1106.65102, MR 2269196, 10.1093/imanum/dri048 |
Reference:
|
[9] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.Rev. Franc. Automat. Inform. Rech. Operat. 8, R-2 (1974), 129-151. Zbl 0338.90047, MR 0365287 |
Reference:
|
[10] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods.Springer Berlin-Heidelberg-New York (1991). Zbl 0788.73002, MR 1115205 |
Reference:
|
[11] Cai, Z., Lazarov, R., Manteuffel, T. A., McCormick, S. F.: First-order system least squares for second-order partial differential equations: Part I.SIAM J. Numer. Anal. 31 (1994), 1785-1799. MR 1302685, 10.1137/0731091 |
Reference:
|
[12] Carey, G. F., Pehlivanov, A. I.: Local error estimation and adaptive remeshing scheme for least-squares mixed finite elements.Comput. Methods Appl. Mech. Eng. 150 (1997), 125-131. Zbl 0907.65101, MR 1487940, 10.1016/S0045-7825(97)00098-4 |
Reference:
|
[13] Carey, G. F., Pehlivanov, A. I., Shen, Y., Bose, A., Wang, K. C.: Least-squares finite elements for fluid flow and transport.Int. J. Numer. Methods Fluids 27 (1998), 97-107. Zbl 0904.76043, MR 1602155, 10.1002/(SICI)1097-0363(199801)27:1/4<97::AID-FLD652>3.0.CO;2-2 |
Reference:
|
[14] Ciarlet, P.: The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics 40. 2nd Edition.SIAM Philadelphia (2002). MR 1930132 |
Reference:
|
[15] Křížek, M., Neittaanmäki, P., Stenberg, R.: Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lect. Notes Pure Appl. Math., 96.Marcel Dekker New York (1998). MR 1602809 |
Reference:
|
[16] Pehlivanov, A. I., Carey, G. F.: Error estimates for least-squares mixed finite elements.RAIRO, Modélisation Math. Anal. Numér. 28 (1994), 499-516. Zbl 0820.65065, MR 1295584, 10.1051/m2an/1994280504991 |
Reference:
|
[17] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D.: Least-squares mixed finite elements for second order elliptic problems.SIAM J. Numer. Anal. 31 (1994), 1368-1377. Zbl 0806.65108, MR 1293520, 10.1137/0731071 |
Reference:
|
[18] Pehlivanov, A. I., Carey, G. F., Vassilevski, P. S.: Least-squares mixed finite element methods for non-selfadjoint elliptic problems. I: Error estimates.Numer. Math. 72 (1996), 501-522. Zbl 0878.65096, MR 1376110, 10.1007/s002110050179 |
Reference:
|
[19] Raviart, P. A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems.Lect. Notes Math. 606 (1977), 292-315. Zbl 0362.65089, MR 0483555, 10.1007/BFb0064470 |
Reference:
|
[20] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods. Lect. Notes Math. 1605.Springer Berlin (1995). MR 1439050 |
. |