Previous |  Up |  Next

Article

Title: Analysis of a non-standard mixed finite element method with applications to superconvergence (English)
Author: Brandts, Jan H.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 3
Year: 2009
Pages: 225-235
Summary lang: English
.
Category: math
.
Summary: We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive than applying the least-squares mixed finite element method. (English)
Keyword: least-squares mixed finite element method
Keyword: non-standard mixed finite element method
Keyword: superconvergence
Keyword: supercloseness
MSC: 35J25
MSC: 65N12
MSC: 65N15
MSC: 65N30
idZBL: Zbl 1212.65441
idMR: MR2530540
DOI: 10.1007/s10492-009-0014-8
.
Date available: 2010-07-20T12:59:44Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140361
.
Reference: [1] Barrios, T. P., Gatica, G. N.: An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses.J. Comput. Appl. Math. 200 (2007), 653-676. Zbl 1112.65106, MR 2289241, 10.1016/j.cam.2006.01.017
Reference: [2] Bochev, P. B., Gunzburger, M. D.: Finite element methods of least-squares type.SIAM Rev. 40 (1998), 789-837. Zbl 0914.65108, MR 1659689, 10.1137/S0036144597321156
Reference: [3] Brandts, J. H.: Superconvergence and a posteriori error estimation for triangular mixed finite elements.Numer. Math. 68 (1994), 311-324. Zbl 0823.65103, MR 1313147, 10.1007/s002110050064
Reference: [4] Brandts, J. H., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489
Reference: [5] Brandts, J. H., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27-36. Zbl 1072.65137, MR 2124141
Reference: [6] Brandts, J. H., Chen, Y. P.: An alternative to the least-squares mixed finite element method for elliptic problems.In: Numerical Mathematics and Advanced Applications M. Feistauer, V. Dolejší, P. Knobloch, K. Najzar Springer (2004), 169-175. Zbl 1056.65110, MR 2121365, 10.1007/978-3-642-18775-9_14
Reference: [7] Brandts, J. H., Chen, Y. P.: Superconvergence of least-squares mixed finite elements.Int. J. Numer. Anal. Model. 3 (2006), 303-310. Zbl 1096.65108, MR 2237884
Reference: [8] Brandts, J. H., Chen, Y. P., Yang, J.: A note on least-squares mixed finite elements in relation to standard and mixed finite elements.IMA J. Numer. Anal. 26 (2006), 779-789. Zbl 1106.65102, MR 2269196, 10.1093/imanum/dri048
Reference: [9] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.Rev. Franc. Automat. Inform. Rech. Operat. 8, R-2 (1974), 129-151. Zbl 0338.90047, MR 0365287
Reference: [10] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods.Springer Berlin-Heidelberg-New York (1991). Zbl 0788.73002, MR 1115205
Reference: [11] Cai, Z., Lazarov, R., Manteuffel, T. A., McCormick, S. F.: First-order system least squares for second-order partial differential equations: Part I.SIAM J. Numer. Anal. 31 (1994), 1785-1799. MR 1302685, 10.1137/0731091
Reference: [12] Carey, G. F., Pehlivanov, A. I.: Local error estimation and adaptive remeshing scheme for least-squares mixed finite elements.Comput. Methods Appl. Mech. Eng. 150 (1997), 125-131. Zbl 0907.65101, MR 1487940, 10.1016/S0045-7825(97)00098-4
Reference: [13] Carey, G. F., Pehlivanov, A. I., Shen, Y., Bose, A., Wang, K. C.: Least-squares finite elements for fluid flow and transport.Int. J. Numer. Methods Fluids 27 (1998), 97-107. Zbl 0904.76043, MR 1602155, 10.1002/(SICI)1097-0363(199801)27:1/4<97::AID-FLD652>3.0.CO;2-2
Reference: [14] Ciarlet, P.: The Finite Element Methods for Elliptic Problems. Classics in Applied Mathematics 40. 2nd Edition.SIAM Philadelphia (2002). MR 1930132
Reference: [15] Křížek, M., Neittaanmäki, P., Stenberg, R.: Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lect. Notes Pure Appl. Math., 96.Marcel Dekker New York (1998). MR 1602809
Reference: [16] Pehlivanov, A. I., Carey, G. F.: Error estimates for least-squares mixed finite elements.RAIRO, Modélisation Math. Anal. Numér. 28 (1994), 499-516. Zbl 0820.65065, MR 1295584, 10.1051/m2an/1994280504991
Reference: [17] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D.: Least-squares mixed finite elements for second order elliptic problems.SIAM J. Numer. Anal. 31 (1994), 1368-1377. Zbl 0806.65108, MR 1293520, 10.1137/0731071
Reference: [18] Pehlivanov, A. I., Carey, G. F., Vassilevski, P. S.: Least-squares mixed finite element methods for non-selfadjoint elliptic problems. I: Error estimates.Numer. Math. 72 (1996), 501-522. Zbl 0878.65096, MR 1376110, 10.1007/s002110050179
Reference: [19] Raviart, P. A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems.Lect. Notes Math. 606 (1977), 292-315. Zbl 0362.65089, MR 0483555, 10.1007/BFb0064470
Reference: [20] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods. Lect. Notes Math. 1605.Springer Berlin (1995). MR 1439050
.

Files

Files Size Format View
AplMat_54-2009-3_4.pdf 251.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo