Previous |  Up |  Next

Article

Title: $\Sigma $-convergence of nonlinear monotone operators in perforated domains with holes of small size (English)
Author: Woukeng, Jean Louis
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 6
Year: 2009
Pages: 465-489
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the homogenization beyond the periodic setting, of nonlinear monotone operators in a domain in $\Bbb R^N$ with isolated holes of size $\varepsilon ^2$ ($\varepsilon >0$ a small parameter). The order of the size of the holes is twice that of the oscillations of the coefficients of the operator, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The usual periodic perforation of the domain and the classical periodicity hypothesis on the coefficients of the operator are here replaced by an abstract assumption covering a great variety of behaviors such as the periodicity, the almost periodicity and many more besides. We illustrate this abstract setting by working out a few concrete homogenization problems. Our main tool is the recent theory of homogenization structures. (English)
Keyword: perforated domains
Keyword: homogenization
Keyword: reiterated
MSC: 35B27
MSC: 35B40
MSC: 35J60
MSC: 46J10
MSC: 46N20
idZBL: Zbl 1212.35023
idMR: MR2563121
DOI: 10.1007/s10492-009-0030-8
.
Date available: 2010-07-20T13:24:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140379
.
Reference: [1] Allaire, G., Murat, F.: Homogenization of the Neumann problem with nonisolated holes.Asymptotic Anal. 7 (1993), 81-95. Zbl 0823.35014, MR 1225439, 10.3233/ASY-1993-7201
Reference: [2] Amaziane, B., Goncharenko, M., Pankratov, L.: Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption.Z. Angew. Math. Phys. 58 (2007), 592-611. Zbl 1124.35006, MR 2341687, 10.1007/s00033-006-5070-2
Reference: [3] Besicovitch, A. S.: Almost Periodic Functions.Dover Publications New York (1955). Zbl 0065.07102, MR 0068029
Reference: [4] Bourbaki, N.: Éléments de mathématique. Intégration, Chap. 1-4.Hermann Paris (1966), French.
Reference: [5] Bourbaki, N.: Éléments de matématique. Topologie générale, Chap. 1-4.Hermann Paris (1971), French. MR 0358652
Reference: [6] Cardone, G., Donato, P., Gaudiello, A.: A compactness result for elliptic equations with subquadratic growth in perforated domains.Nonlin. Anal., Theory Methods Appl. 32 (1998), 335-361. Zbl 0988.35060, MR 1610578, 10.1016/S0362-546X(97)00486-0
Reference: [7] V. Chiadò Piat, Defranceschi, A.: Asymptotic behaviour of quasi-linear problems with Neumann boundary conditions on perforated domains.Appl. Anal. 36 (1990), 65-87. MR 1040879, 10.1080/00036819008839922
Reference: [8] Cioranescu, D., J. Saint Jean Paulin: Homogenization in open sets with holes.J. Math. Anal. Appl. 71 (1979), 590-607. Zbl 0427.35073, MR 0548785, 10.1016/0022-247X(79)90211-7
Reference: [9] Cioranescu, D., Donato, P.: An introduction to homogenization.Oxford Lecture Series in Mathematics and its Applications, 17 Oxford University Press Oxford (1999). Zbl 0939.35001, MR 1765047
Reference: [10] Cioranescu, D., Murat, F.: Un terme étrange venu d'ailleurs. Nonlin. partial differential equations and their applications, Coll. de France Semin., Vol. II, Vol. III.Res. Notes Math. (1982), 98-138, 154-178 French.
Reference: [11] Conca, C., Donato, P.: Non-homogeneous Neumann problems in domains with small holes.RAIRO, Modél. Math. Anal. Numér. 22 (1988), 561-607. Zbl 0669.35028, MR 0974289, 10.1051/m2an/1988220405611
Reference: [12] Donato, P., Sgambati, L.: Homogenization for some nonlinear problems in perforated domains.Rev. Mat. Apl. 15 (1994), 17-38. Zbl 0806.35011, MR 1289135
Reference: [13] Fournier, J. F. F., Stewart, J.: Amalgams of $L^p$ and $l^q$.Bull. Am. Math. Soc. 13 (1985), 1-21. MR 0788385, 10.1090/S0273-0979-1985-15350-9
Reference: [14] Guichardet, A.: Analyse harmonique commutative.Dunod Paris (1968), French. Zbl 0159.18601, MR 0240554
Reference: [15] Huang, C.: Homogenization of biharmonic equations in domains perforated with tiny holes.Asymptotic Anal. 15 (1997), 203-227. Zbl 0898.35009, MR 1487711, 10.3233/ASY-1997-153-401
Reference: [16] Larsen, R.: Banach Algebras. An Introduction.Marcel Dekker New York (1973). Zbl 0264.46042, MR 0487369
Reference: [17] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod/Gauthier-Vilars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [18] Lukkassen, D., Nguetseng, G., Nnang, H., Wall, P.: Reiterated homogenization of nonlinear elliptic operators in a general deterministic setting.J. Funct. Spaces Appl. 7 (2009), 121-152. MR 2541229, 10.1155/2009/102486
Reference: [19] Nguetseng, G.: Homogenization structures and applications I.Z. Anal. Anwend. 22 (2003), 73-107. Zbl 1045.46031, MR 1962077, 10.4171/ZAA/1133
Reference: [20] Nguetseng, G.: Homogenization structures and applications II.Z. Anal. Anwend. 23 (2004), 483-508. Zbl 1116.46064, MR 2094594, 10.4171/ZAA/1208
Reference: [21] Nguetseng, G.: Mean value on locally compact abelian groups.Acta Sci. Math. 69 (2003), 203-221. Zbl 1047.43003, MR 1991666
Reference: [22] Nguetseng, G.: Almost periodic homogenization: Asymptotic analysis of a second order elliptic equation.Preprint.
Reference: [23] Nguetseng, G.: Homogenization in perforated domains beyond the periodic setting.J. Math. Anal. Appl. 289 (2004), 608-628. Zbl 1037.35020, MR 2026928, 10.1016/j.jmaa.2003.08.045
Reference: [24] Nguetseng, G., Nnang, H.: Homogenization of nonlinear monotone operators beyond the periodic setting.Electron. J. Differ. Equ. 2003 (2003). Zbl 1032.35031, MR 1971022
Reference: [25] Nguetseng, G., Woukeng, J. L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients.Electron. J. Differ. Equ. 2004 (2004). Zbl 1058.35025, MR 2075421
Reference: [26] Nguetseng, G., Woukeng, J. L.: $\Sigma $-convergence of nonlinear parabolic operators.Nonlinear Anal., Theory Methods Appl. 66 (2007), 968-1004. Zbl 1116.35011, MR 2288445, 10.1016/j.na.2005.12.035
Reference: [27] Oleinik, O. A., Shaposhnikova, T. A.: On the biharmonic equation in a domain perforated along manifolds of small dimension.Differ. Uravn. 32 (1996), 335-362. MR 1444937
.

Files

Files Size Format View
AplMat_54-2009-6_1.pdf 387.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo