Previous |  Up |  Next

Article

Title: Modelling and control in pseudoplate problem with discontinuous thickness (English)
Author: Lovíšek, Ján
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 6
Year: 2009
Pages: 491-525
Summary lang: English
.
Category: math
.
Summary: This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control is introduced. Taking into account the results of $G$-convergence theory, we prove the existence of an optimal solution of extended control problem. Moreover, approximate optimization problem is introduced, making use of the finite element method. The solvability of the approximate problem is proved on the basis of a general theorem. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem. (English)
Keyword: control of variational inequalities
Keyword: optimal design
Keyword: minimization
Keyword: pseudoplate with obstacles
Keyword: cost functional
Keyword: thickness
Keyword: $G$-convergence
Keyword: coercive variational inequality
Keyword: approximate optimization problem
Keyword: finite element
MSC: 49J40
MSC: 49K30
MSC: 49M15
MSC: 49N90
MSC: 65K15
MSC: 65N30
MSC: 70Q05
MSC: 74K20
MSC: 93C20
MSC: 93C30
idZBL: Zbl 1212.49009
idMR: MR2563122
DOI: 10.1007/s10492-009-0031-7
.
Date available: 2010-07-20T13:26:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140381
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Academic Press New York-London (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Armand, J. L.: Application of the Theory of Optimal Control of Distributed Parameter Systems of Structural Optimization.NASA (1972).
Reference: [3] Boccardo, L., Murat, F.: Nouveaux résultats de convergence des problèmes unilateraux.Res. Notes Math. 60 (1982), 64-85 French. MR 0652507
Reference: [4] Boccardo, L., Marcellini, F.: Sulla convergenza delle soluzioni di disequazioni variazionali.Ann. Mat. Pura Appl., IV. Ser. 110 (1976), 137-159 Italian. Zbl 0333.35030, MR 0425344, 10.1007/BF02418003
Reference: [5] Boccardo, L., Dolcetta, J. C.: $G$-convergenza e problema di Dirichlet unilaterale.Boll. Unione Math. Ital., IV. Ser. 12 (1975), 115-123 Italian. Zbl 0337.35023, MR 0399988
Reference: [6] Brezis, H., Stampacchia, G.: Sur la régularité de la solution d'inéquations elliptiques.Bull. Soc. Math. Fr. 96 (1968), 153-180 French. Zbl 0165.45601, MR 0239302, 10.24033/bsmf.1663
Reference: [7] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North Holland Amsterdam-New York-Oxford (1978). Zbl 0383.65058, MR 0520174
Reference: [8] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems.Springer New York (1984). Zbl 0536.65054, MR 0737005
Reference: [9] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization. Theory, Approximation and Computation Advance in Design and Control.SIAM Philadelphia (2003). MR 1969772
Reference: [10] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier Amsterdam (2004). Zbl 1116.74003, MR 2285091
Reference: [11] Hlaváček, I., Lovíšek, J.: Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data.Applicationes Mathematicae 28 (2001), 407-426 Control in obstacle-pseudoplate problems with friction on the boundary. Approximate optimal design and worst scenario problems. Applicationes Mathematicae 29 (2002), 75-95. MR 1873903, 10.4064/am28-4-3
Reference: [12] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.Academic Press New York (1980). Zbl 0457.35001, MR 0567696
Reference: [13] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). MR 1066462
Reference: [14] Lurie, K. A., Cherkaev, A. V.: $G$-closure of a set of anisotropically conducting media in the two dimensional case.J. Optimization Theory Appl. 42 (1984), 283-304. Zbl 0504.73060, MR 0737972, 10.1007/BF00934300
Reference: [15] Mignot, F.: Controle dans les inéquations variationelles elliptiques.J. Funct. Anal. 22 (1976), 130-185 French. Zbl 0364.49003, MR 0423155, 10.1016/0022-1236(76)90017-3
Reference: [16] Murat, F.: $H$-convergence.Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger. Lecture Notes (1977-1978).
Reference: [17] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia Prague (1967), French. MR 0227584
Reference: [18] Petersson, J.: On stiffness maximization of variable thickness sheet with unilateral contact.Q. Appl. Math. 54 (1996), 541-550. Zbl 0871.73046, MR 1402408, 10.1090/qam/1402408
Reference: [19] Raitum, U. E.: Sufficient conditions for sets of solutions of linear elliptic equations to be weakly sequentially closed.Latvian Math. J. 24 (1980), 142-155. MR 0616251
Reference: [20] Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics.North Holland Amsterdam (1987). Zbl 0606.73017, MR 0880369
Reference: [21] Shillor, M., Sofonea, M., Telega, J. J.: Models and Analysis of Quasistatic Contact. Variational Methods.Springer Berlin (2004). Zbl 1069.74001
Reference: [22] Sokolowski, J.: Optimal control in coefficients of boundary value problems with unilateral constraints.Bull. Pol. Acad. Sci., Tech. Sci. 31 (1983), 71-81. Zbl 0544.49005
Reference: [23] Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Sc. Norm. Super. Pisa Sci. Fis. Mat., III. Ser. 22 (1968), 571-597 Italian. MR 0240443
Reference: [24] Zhikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer Berlin (1994). MR 1329546
.

Files

Files Size Format View
AplMat_54-2009-6_2.pdf 525.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo