Previous |  Up |  Next

Article

Title: On existence of positive periodic solutions of a kind of Rayleigh equation with a deviating argument (English)
Author: Zhou, Yinggao
Author: Wu, Min
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 3
Year: 2010
Pages: 189-196
Summary lang: English
.
Category: math
.
Summary: The existence of positive periodic solutions for a kind of Rayleigh equation with a deviating argument $$ x''(t)+ f(x'(t))+ g(t,x(t-\tau (t)))= p(t) $$ is studied. Using the coincidence degree theory, some sufficient conditions on the existence of positive periodic solutions are obtained. (English)
Keyword: Rayleigh equations
Keyword: positive periodic solution
Keyword: a priori estimate
MSC: 34K13
MSC: 47N20
idZBL: Zbl 1224.34235
idMR: MR2657833
DOI: 10.1007/s10492-010-0007-7
.
Date available: 2010-07-20T13:40:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140393
.
Reference: [1] Atici, F. M., Guseinov, G. Sh.: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions.J. Comput. Appl. Math. 132 (2001), 341-356. Zbl 0993.34022, MR 1840633, 10.1016/S0377-0427(00)00438-6
Reference: [2] Gaines, R. E., Mawhin, J. L.: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Mathematics, No. 568.Springer Berlin-Heidelberg-New York (1977). MR 0637067
Reference: [3] Jiang, D., Chu, J., Zhang, M.: Multiplicity of positive periodic solutions to superlinear repulsive singular equations.J. Differ. Equations 211 (2005), 282-302. Zbl 1074.34048, MR 2125544, 10.1016/j.jde.2004.10.031
Reference: [4] Li, F., Liang, Z.: Existence of positive periodic solutions to nonlinear second order differential equations.Appl. Math. Lett. 18 (2005), 1256-1264. Zbl 1088.34038, MR 2170881, 10.1016/j.aml.2005.02.014
Reference: [5] Lin, X., Li, X., Jiang, D.: Positive solutions to superlinear semipositone periodic boundary value problems with repulsive weak singular forces.Comput. Math. Appl. 51 (2006), 507-514. MR 2207437, 10.1016/j.camwa.2005.08.030
Reference: [6] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Springer New York (1989). Zbl 0676.58017, MR 0982267
Reference: [7] Yang, X.: Multiple positive solutions of second-order differential equations.Nonlinear Anal., Theory Methods Appl. 62 (2005), 107-116. Zbl 1077.34025, MR 2139358, 10.1016/j.na.2005.03.013
Reference: [8] Zhang, Z., Wang, J.: On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations.J. Math. Anal. Appl. 281 (2003), 99-107. Zbl 1030.34024, MR 1980077, 10.1016/S0022-247X(02)00538-3
.

Files

Files Size Format View
AplMat_55-2010-3_1.pdf 224.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo