Previous |  Up |  Next

Article

Title: On graphs with the largest Laplacian index (English)
Author: Liu, BoLian
Author: Chen, Zhibo
Author: Liu, Muhuo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 949-960
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a connected simple graph on $n$ vertices. The Laplacian index of $G$, namely, the greatest Laplacian eigenvalue of $G$, is well known to be bounded above by $n$. In this paper, we give structural characterizations for graphs $G$ with the largest Laplacian index $n$. Regular graphs, Hamiltonian graphs and planar graphs with the largest Laplacian index are investigated. We present a necessary and sufficient condition on $n$ and $k$ for the existence of a $k$-regular graph $G$ of order $n$ with the largest Laplacian index $n$. We prove that for a graph $G$ of order $n \geq 3$ with the largest Laplacian index $n$, $G$ is Hamiltonian if $G$ is regular or its maximum vertex degree is $\triangle (G)=n/2$. Moreover, we obtain some useful inequalities concerning the Laplacian index and the algebraic connectivity which produce miscellaneous related results. (English)
Keyword: eigenvalue
Keyword: Laplacian index
Keyword: algebraic connectivity
Keyword: semi-regular graph
Keyword: regular graph
Keyword: Hamiltonian graph
Keyword: planar graph
MSC: 05C50
MSC: 15A36
MSC: 15A42
idZBL: Zbl 1174.05078
idMR: MR2471159
.
Date available: 2010-07-21T08:06:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140433
.
Reference: [1] Bonday, J. A., Murty, U. S. R.: Graph Theory with Applications.Macmillan London (1976).
Reference: [2] Cvetkovic, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications.VEB Deutscher Verlag der Wissenschaften Berlin (1980).
Reference: [3] Fiedler, M.: Algebraic connectivity of graphs.Czechoslovak Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007
Reference: [4] Gracssi, R.: Relevant inequalities in graph connectivity.Arch. Ineqal. Appl. 2 (2004), 183-198. MR 2106953
Reference: [5] Gutman, I.: The star is the tree with greatest Laplacian eignvalue.Kragujevac J. Math. 24 (2002), 61-65. MR 1947659
Reference: [6] Haemers, W. H.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 227-228 (1995), 593-616. Zbl 0831.05044, MR 1344588
Reference: [7] Harary, F.: Graph Theory.Addison-Wesley Reading (1969). Zbl 0196.27202, MR 0256911
Reference: [8] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
.

Files

Files Size Format View
CzechMathJ_58-2008-4_7.pdf 260.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo