Previous |  Up |  Next

Article

Title: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid (English)
Author: Cumsille, Patricio
Author: Takahashi, Takéo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 961-992
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\Bbb R^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known {\it a priori}, so we deal with a free boundary value problem. \endgraf We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough. (English)
Keyword: Navier-Stokes equations
Keyword: incompressible fluid
Keyword: rigid bodies
MSC: 35B30
MSC: 35Q30
MSC: 35R35
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1174.35092
idMR: MR2471160
.
Date available: 2010-07-21T08:07:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140434
.
Reference: [1] Arnold, V. I.: Ordinary Differential Equations.Springer Berlin (1992); translated from the third Russian edition. Zbl 0858.34001, MR 1162307
Reference: [2] Conca, C., Martín, J. San, Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid.Commun. Partial Differ. Equations 25 (2000), 1019-1042. MR 1759801
Reference: [3] Cumsille, P., Tucsnak, M.: Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle.Math. Methods Appl. Sci. 29 (2006), 595-623. MR 2205973, 10.1002/mma.702
Reference: [4] Desjardins, B., Esteban, M. J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid.Arch. Ration. Mech. Anal. 146 (1999), 59-71. Zbl 0943.35063, MR 1682663, 10.1007/s002050050136
Reference: [5] Farwiq, R., Sohr, H.: The stationary and non-stationary Stokes system in exterior domains with non-zero divergence and non-zero boundary values.Math. Methods Appl. Sci. 17 (1994), 269-291. MR 1265181, 10.1002/mma.1670170405
Reference: [6] Feireisl, E.: On the motion of rigid bodies in a viscous fluid.Appl. Math. 47 (2002), 463-484. Zbl 1090.35137, MR 1948192, 10.1023/A:1023245704966
Reference: [7] Feireisl, E.: On the motion of rigid bodies in a viscous compressible fluid.Arch. Ration. Mech. Anal. 167 (2003), 281-308. Zbl 1090.76061, MR 1981859, 10.1007/s00205-002-0242-5
Reference: [8] Galdi, G. P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications.Handbook of Mathematical Fluid Dynamics, Vol. I Elsevier Amsterdam (2002), 653-791. MR 1942470
Reference: [9] Galdi, G. P., Silvestre, A. L.: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques.Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1 Kluwer/Plenum New York (2002), 121-144. Zbl 1046.35084, MR 1970608, 10.1007/978-1-4615-0777-2_8
Reference: [10] Galdi, G. P., Silvestre, A. L.: Strong solutions to the Navier-Stokes equations around a rotating obstacle.Arch. Ration. Mech. Anal. 176 (2005), 331-350. Zbl 1081.35076, MR 2185661, 10.1007/s00205-004-0348-z
Reference: [11] Maday, C. Grandmont,Y.: Existence for an unsteady fluid-structure interaction problem.M2AN, Math. Model. Numer. Anal. 34 (2000), 609-636. Zbl 0969.76017, MR 1763528, 10.1051/m2an:2000159
Reference: [12] Hartman, P.: Ordinary Differential Equations.Birkhäuser Boston (1982). Zbl 0476.34002, MR 0658490
Reference: [13] Heywood, J. G.: The Navier-Stokes equations: On the existence, regularity and decay of solutions.Indiana Univ. Math. J. 29 (1980), 639-681. Zbl 0494.35077, MR 0589434, 10.1512/iumj.1980.29.29048
Reference: [14] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle.Arch. Rational Mech. Anal. 150 (1999), 307-348. Zbl 0949.35106, MR 1741259, 10.1007/s002050050190
Reference: [15] Hoffmann, K.-H., Starovoitov, V. N.: On a motion of a solid body in a viscous fluid. Two-dimensional case.Adv. Math. Sci. Appl. 9 (1999), 633-648. Zbl 0966.76016, MR 1725677
Reference: [16] Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain.J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303-319. Zbl 0381.35066, MR 0481649
Reference: [17] Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I.Springer Berlin-Heidelberg-New York (1972). Zbl 0223.35039, MR 0350177
Reference: [18] Martín, J. A. San, Starovoitov, V., Tucsnak, M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid.Arch. Ration. Mech. Anal. 161 (2002), 113-147. MR 1870954, 10.1007/s002050100172
Reference: [19] Serre, D.: Chute libre d'un solide dans un fluide visqueux incompressible. Existence.Japan J. Appl. Math. 4 (1987), 99-110 French. Zbl 0655.76022, MR 0899206, 10.1007/BF03167757
Reference: [20] Silvestre, A. L.: On the slow motion of a self-propelled rigid body in a viscous incompressible fluid.J. Math. Anal. Appl. 274 (2002), 203-227. Zbl 1121.76321, MR 1936694, 10.1016/S0022-247X(02)00289-5
Reference: [21] Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain.Adv. Differ. Equ. 8 (2003), 1499-1532. Zbl 1101.35356, MR 2029294
Reference: [22] Takahashi, T., Tucsnak, M.: Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid.J. Math. Fluid Mech. 6 (2004), 53-77. Zbl 1054.35061, MR 2027754, 10.1007/s00021-003-0083-4
Reference: [23] Temam, R.: Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset.North-Holland Amsterdam-New York-Oxford (1984). MR 0769654
.

Files

Files Size Format View
CzechMathJ_58-2008-4_8.pdf 393.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo