Previous |  Up |  Next

Article

Title: Rigid extensions of $\ell$-groups of continuous functions (English)
Author: Knox, Michelle L.
Author: McGovern, Warren Wm.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 993-1014
Summary lang: English
.
Category: math
.
Summary: Let $C(X,\mathbb Z )$, $C(X,\mathbb Q )$ and $C(X)$ denote the $\ell $-groups of integer-valued, rational-valued and real-valued continuous functions on a topological space $X$, respectively. Characterizations are given for the extensions $C(X,\mathbb Z )\leq C(X,\mathbb Q )\leq C(X)$ to be rigid, major, and dense. (English)
Keyword: rigid extension
Keyword: major extension
Keyword: archimedean extension
Keyword: dense extension
MSC: 06F20
MSC: 54C40
MSC: 54F65
idZBL: Zbl 1174.06341
idMR: MR2471161
.
Date available: 2010-07-21T08:07:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140435
.
Reference: [1] Aron, E. R., Hager, A. W.: Convex vector lattices and $\ell$-algebras.Top. Its Appl. 12 (1981), 1-10. MR 0600458
Reference: [2] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux rticuls.French Lecture Notes in Mathematics, 608. Springer-Verlag, Berlin-New York (1977). MR 0552653
Reference: [3] Conrad, P., McAlister, D.: The completion of a lattice ordered group.J. Austral. Math. Soc. 9 (1969), 182-208. MR 0249340, 10.1017/S1446788700005760
Reference: [4] Darnel, M.: Theory of Lattice-Ordered Groups.Monographs and Textbooks in Pure and Applied Mathematics, 187, Marcel Dekker, Inc., New York (1995). Zbl 0810.06016, MR 1304052
Reference: [5] Engelking, R.: General Topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin.(1989). MR 1039321
Reference: [6] Hager, A., Kimber, C., McGovern, W. Wm.: Unique $a$-closure for some $\ell$-groups of rational valued functions.Czech. Math. J. 55 (2005), 409-421. Zbl 1081.06020, MR 2137147, 10.1007/s10587-005-0031-z
Reference: [7] Hager, A., Martinez, J.: Singular archimedean lattice-ordered groups.Algebra Universalis. 40 (1998), 119-147. Zbl 0936.06015, MR 1651866, 10.1007/s000120050086
Reference: [8] Henriksen, M., Woods, R. G.: Cozero-complemented spaces; when the space of minimal prime ideals of a $C(X)$ is compact.Top. Its Applications 141 (2004), 147-170. Zbl 1067.54015, MR 2058685
Reference: [9] Porter, J., Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, New York (1988). Zbl 0652.54016, MR 0918341
Reference: [10] Wage, M. L.: The dimension of product spaces.Proc. Natl. Acad. Sci. 75 (1978), 4671-4672. Zbl 0387.54019, MR 0507930, 10.1073/pnas.75.10.4671
.

Files

Files Size Format View
CzechMathJ_58-2008-4_9.pdf 358.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo