[2] Amann, H.: 
Nonhomogeneous Navier-Stokes equations with integrable low-regularity data. Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York (2002), 1-28. 
DOI 10.1007/978-1-4615-0701-7_1 | 
MR 1971987[5] Bogovskij, M. E.: 
Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979), 1094-1098. 
Zbl 0499.35022[6] Cannone, M.: 
Viscous flows in Besov spaces. Advances in Math. Fluid Mech., Springer, Berlin (2000), 1-34. 
MR 1863208 | 
Zbl 0980.35125[7] Fabes, E. B., Jones, B. F., Rivière, N. M.: 
The initial value problem for the Navier-Stokes equations with data in $L^p$. Arch. Rational Mech. Anal. 45 (1972), 222-240. 
DOI 10.1007/BF00281533 | 
MR 0316915[10] Frehse, J., Růžička, M.: 
Weighted estimates for the stationary Navier-Stokes equations. Acta Appl. Math. 37 53-66 (1994). 
DOI 10.1007/BF00995129 | 
MR 1308745[11] Frehse, J., Růžička, M.: 
Regularity for the stationary Navier-Stokes equations in bounded domains. Arch. Rational Mech. Anal. 128 361-380 (1994). 
DOI 10.1007/BF00387714 | 
MR 1308859[12] Frehse, J., Růžička, M.: 
On the regularity of the stationary Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 21 63-95 (1994). 
MR 1276763[13] Frehse, J., Růžička, M.: 
Existence of regular solutions to the stationary Navier-Stokes equations. Math. Ann. 302 669-717 (1995). 
DOI 10.1007/BF01444513 | 
MR 1343646[14] Frehse, J., Růžička, M.: 
Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 23 701-719 (1996). 
MR 1469571[15] Frehse, J., Růžička, M.: 
Regularity for steady solutions of the Navier-Stokes equations J. G. Heywood, et al. (eds.), Theory of the Navier-Stokes equations. Proc. 3rd Intern. Conf. Navier-Stokes Equations: theory and numerical methods. World Scientific Ser. Adv. Math. Appl. Sci., Singapore 47 159-178 (1998). 
DOI 10.1142/9789812816740_0013 | 
MR 1643033[16] Frehse, J., Růžička, M.: 
A new regularity criterion for steady Navier-Stokes equations. Differential Integral Equations 11 (1998), 361-368. 
MR 1741851[17] Fujiwara, D., Morimoto, H.: 
An $L_r$-theory of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo (1A) 24 (1977), 685-700. 
MR 0492980[18] Galdi, G. P.: 
An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Linearized Steady Problems. Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, New York (1998). 
MR 2808162[19] Galdi, G. P.: 
An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, Vol. 39, New York (1998). 
MR 2808162[23] Giga, Y.: 
Domains of fractional powers of the Stokes operator in $L_r$-spaces. Arch. Rational Mech. Anal. 89 (1985), 251-265. 
DOI 10.1007/BF00276874 | 
MR 0786549[24] Giga, Y., Sohr, H.: 
On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec. IA 36 (1989), 103-130. 
MR 0991022[26] Kato, T.: 
Strong $L^p$-solutions to the Navier-Stokes equations in $\Bbb R^m$ with applications to weak solutions. Math. Z. 187 (1984), 471-480. 
DOI 10.1007/BF01174182 | 
MR 0760047[27] Kozono, H., Yamazaki, M.: 
Local and global solvability of the Navier-Stokes exterior problem with Cauchy data in the space $L^{n,\infty}$. Houston J. Math. 21 (1995), 755-799. 
MR 1368344[28] Nečas, J.: 
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967). 
MR 0227584[29] Simader, C. G., Sohr, H.: 
A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains. Adv. Math. Appl. Sci., World Scientific 11 (1992), 1-35. 
DOI 10.1142/9789814503594_0001 | 
MR 1190728[31] Sohr, H.: 
The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel (2001). 
MR 1928881 | 
Zbl 0983.35004[32] Temam, R.: 
Navier-Stokes Equations. Theory and numerical analysis. North-Holland, Amsterdam, New York, Tokyo (1984). 
MR 0769654 | 
Zbl 0568.35002[33] Triebel, H.: 
Interpolation Theory, Function Spaces. Differential Operators. North-Holland, Amsterdam (1978). 
MR 0503903 | 
Zbl 0387.46033[34] Wahl, W. von: 
Regularity of weak solutions of the Navier-Stokes equations. Proc. Symp. Pure Math. 45 (1986), 497-503. 
MR 0843635