Previous |  Up |  Next

Article

Title: Weakly connected domination stable trees (English)
Author: Lemańska, Magdalena
Author: Raczek, Joanna
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 95-100
Summary lang: English
.
Category: math
.
Summary: A dominating set $D\subseteq V(G)$ is a {\it weakly connected dominating set} in $G$ if the subgraph $G[D]_w=(N_G[D],E_w)$ weakly induced by $D$ is connected, where $E_w$ is the set of all edges having at least one vertex in $D$. {\it Weakly connected domination number} $\gamma _w(G)$ of a graph $G$ is the minimum cardinality among all weakly connected dominating sets in $G$. A graph $G$ is said to be {\it weakly connected domination stable} or just $\gamma _w$-{\it stable} if $\gamma _w(G)=\gamma _w(G+e)$ for every edge $e$ belonging to the complement $\overline G$ of $G.$ We provide a constructive characterization of weakly connected domination stable trees. (English)
Keyword: weakly connected domination number
Keyword: tree
Keyword: stable graphs
MSC: 05C05
MSC: 05C69
idZBL: Zbl 1224.05097
idMR: MR2486618
.
Date available: 2010-07-20T14:54:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140466
.
Reference: [1] Sumner, D. P., Blitch, P.: Domination critical graphs.J. Combin. Theory Ser. B 34 (1983), 65-76. Zbl 0512.05055, MR 0701172, 10.1016/0095-8956(83)90007-2
Reference: [2] Dunbar, J. E., Grossman, J. W., Hattingh, J. H., Hedetniemi, S. T., McRae, A.: On weakly-connected domination in graphs.Discrete Mathematics 167-168 (1997), 261-269. Zbl 0871.05037, MR 1446750
Reference: [3] Henning, M. A.: Total domination excellent trees.Discrete Mathematics 263 (2003), 93-104. Zbl 1015.05065, MR 1955717, 10.1016/S0012-365X(02)00572-1
Reference: [4] Chen, X., Sun, L., Ma, D.: Connected domination critical graphs.Applied Mathematics Letters 17 (2004), 503-507. Zbl 1055.05110, MR 2057342, 10.1016/S0893-9659(04)90118-8
Reference: [5] Lemańska, M.: Domination numbers in graphs with removed edge or set of edges.Discussiones Mathematicae Graph Theory 25 (2005), 51-56. MR 2152049, 10.7151/dmgt.1259
.

Files

Files Size Format View
CzechMathJ_59-2009-1_7.pdf 223.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo