Previous |  Up |  Next

Article

Title: The convergence space of minimal usco mappings (English)
Author: Anguelov, R.
Author: Kalenda, O. F. K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 101-128
Summary lang: English
.
Category: math
.
Summary: A convergence structure generalizing the order convergence structure on the set of Hausdorff continuous interval functions is defined on the set of minimal usco maps. The properties of the obtained convergence space are investigated and essential links with the pointwise convergence and the order convergence are revealed. The convergence structure can be extended to a uniform convergence structure so that the convergence space is complete. The important issue of the denseness of the subset of all continuous functions is also addressed. (English)
Keyword: minimal usco map
Keyword: convergence space
Keyword: complete uniform convergence space
Keyword: pointwise convergence
Keyword: order convergence
MSC: 54A05
MSC: 54C60
MSC: 54E15
idZBL: Zbl 1224.54048
idMR: MR2486619
.
Date available: 2010-07-20T14:55:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140467
.
Reference: [1] Anguelov, R.: Dedekind order completion of C(X) by Hausdorff continuous functions.Quaestiones Mathematicae 27 (2004), 153-170. Zbl 1062.54017, MR 2091694, 10.2989/16073600409486091
Reference: [2] Anguelov, R., Rosinger, E. E.: Solving Large Classes of Nonlinear Systems of PDE's.Computers and Mathematics with Applications 53 (2007), 491-507. MR 2323705, 10.1016/j.camwa.2006.02.040
Reference: [3] Anguelov, R., Rosinger, E. E.: Hausdorff Continuous Solutions of Nonlinear PDEs through the Order Completion Method.Quaestiones Mathematicae 28 (2005), 271-285. MR 2164372, 10.2989/16073600509486128
Reference: [4] Anguelov, R., Walt, J. H. van der: Order Convergence Structure on $C(X)$.Quaestiones Mathematicae 28 (2005), 425-457. MR 2182453, 10.2989/16073600509486139
Reference: [5] Beattie, R., Butzmann, H.-P.: Convergence structures and applications to functional analysis.Kluwer Academic Plublishers, Dordrecht, Boston, London (2002). MR 2327514
Reference: [6] Borwein, J., Kortezov, I.: Constructive minimal uscos.C.R. Bulgare Sci 57 (2004), 9-12. Zbl 1059.54019, MR 2117234
Reference: [7] Fabian, M.: Gâteaux differentiability of convex functions and topology: weak Asplund spaces.Wiley-Interscience, New York (1997). Zbl 0883.46011, MR 1461271
Reference: [8] Hansell, R. W., Jayne, J. E., Talagrand, M.: First class selectors for weakly upper semi-continuous multi-valued maps in Banach spaces.J. Reine Angew. Math. 361 (1985), 201-220. Zbl 0573.54012, MR 0807260
Reference: [9] Luxemburg, W. A., Zaanen, A. C.: Riesz Spaces I.North-Holland, Amsterdam, London (1971).
Reference: [10] Kalenda, O.: Stegall compact spaces which are not fragmentable.Topol. Appl. 96 (1999), 121-132. Zbl 0991.54030, MR 1702306, 10.1016/S0166-8641(98)00045-5
Reference: [11] Kalenda, O.: Baire-one mappings contained in a usco map.Comment. Math. Univ. Carolinae 48 (2007), 135-145. MR 2338835
Reference: [12] Sendov, B.: Hausdorff approximations.Kluwer Academic, Boston (1990). Zbl 0715.41001, MR 1078632
Reference: [13] Spurný, J.: Banach space valued mappings of the first Baire class contained in usco mappings.Comment. Math. Univ. Carolinae 48 (2007), 269-272. MR 2338094
Reference: [14] Srivatsa, V. V.: Baire class 1 selectors for upper semicontinuous set-valued maps.Trans. Amer. Math. Soc. 337 (1993), 609-624. Zbl 0822.54017, MR 1140919
.

Files

Files Size Format View
CzechMathJ_59-2009-1_8.pdf 368.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo