Previous |  Up |  Next

Article

Keywords:
AM-compact operator; order continuous norm; discrete vector lattice
Summary:
We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice $E$ into a Banach lattice $F$ is an order $\sigma $-complete vector lattice.
References:
[1] Abramovich, Y. A., Wickstead, A. W.: Solutions of several problems in the theory of compact positive operators. Proc. Amer. Math. Soc. 123 (1995), 3021-3026. DOI 10.1090/S0002-9939-1995-1283534-8 | MR 1283534 | Zbl 0860.47023
[2] Aliprantis, C. D., Burkinshaw, O.: Locally solid Riesz spaces. Academic Press (1978). MR 0493242 | Zbl 0402.46005
[3] Aliprantis, C. D., Burkinshaw, O.: Positive compact operators on Banach lattices. Math. Z. 174 (1980), 289-298. DOI 10.1007/BF01161416 | MR 0593826 | Zbl 0425.46015
[4] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices. Proc. Amer. Math. Soc. 83 (1981), 573-578. DOI 10.1090/S0002-9939-1981-0627695-X | MR 0627695 | Zbl 0452.47038
[5] Aqzzouz, B., Nouira, R.: Les opérateurs précompacts sur les treillis vectoriels localement convexes-solides. Sci. Math. Jpn. 57 (2003), 279-256. MR 1959985
[6] Chen, Z. L., Wickstead, A. W.: Vector lattices of weakly compact operators on Banach lattices. Trans. Amer. Math. Soc. 352 (1999), 397-412. DOI 10.1090/S0002-9947-99-02431-9 | MR 1641095
[7] Fremlin, D. H.: Riesz spaces with the order continuity property I. Proc. Cambr. Phil. Soc. 81 (1977), 31-42. DOI 10.1017/S0305004100000244 | MR 0425572 | Zbl 0344.46019
[8] Krengel, U.: Remark on the modulus of compact operators. Bull. Amer. Math. Soc. 72 (1966), 132-133. DOI 10.1090/S0002-9904-1966-11452-0 | MR 0190752 | Zbl 0135.36302
[9] Meyer-Nieberg, P.: Banach lattices. Universitext. Springer-Verlag, Berlin (1991). MR 1128093 | Zbl 0743.46015
[10] Robertson, A. P., Robertson, W.: Topological vector spaces. 2$^{ {nd}}$ ed., Cambridge University Press, London (1973). MR 0350361 | Zbl 0251.46002
[11] Wickstead, A. W.: Dedekind completeness of some lattices of compact operators. Bull. Polish Acad. of Sci. Math. 43 (1995), 297-304. MR 1414786 | Zbl 0847.47025
[12] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems. Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. DOI 10.1017/S0305004100074752 | MR 1373356 | Zbl 0872.47018
[13] Zaanen, A. C.: Riesz spaces II. North Holland Publishing Company (1983). MR 0704021 | Zbl 0519.46001
Partner of
EuDML logo