Previous |  Up |  Next

Article

Keywords:
Radon-Nikodým compact
Summary:
We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.
References:
[1] Arvanitakis, A. D.: Some remarks on Radon-Nikodým compact spaces. Fund. Math. 172 (2002), 41-60. DOI 10.4064/fm172-1-4 | MR 1898402 | Zbl 1012.46021
[2] Avilés, A.: Radon-Nikodým compact spaces of low weight and Banach spaces. Studia Math. 166 (2005), 71-82. DOI 10.4064/sm166-1-5 | MR 2108319
[3] Avilés, A.: Linearly ordered Radon-Nikodým compact spaces. Topology Appl. 154 (2007), 404-409. DOI 10.1016/j.topol.2006.05.004 | MR 2278688
[4] Fabian, M.: Gâteaux differentiability of convex functions and topology. Weak Asplund spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts. New York. MR 1461271 | Zbl 0883.46011
[5] Fabian, M.: Overclasses of the class of Radon-Nikodým compact spaces. Methods in Banach space theory. Proceedings of the V conference on Banach spaces, Cáceres, Spain, September 13-18, 2004. Cambridge: Cambridge University Press. London Mathematical Society Lecture Note Series 337 197-214 (2006). MR 2326387 | Zbl 1149.46017
[6] Fabian, M., Heisler, M., Matoušková, E.: Remarks on continuous images of Radon-Nikodým compacta. Commentat. Math. Univ. Carol. 39 (1998), 59-69. MR 1622332
[7] Iancu, M., Watson, S.: On continuous images of Radon-Nikodým compact spaces through the metric characterization. Topol. Proc. 26 (2001-2002), 677-693. MR 2032843
[8] Namioka, I.: Radon-Nikodým compact spaces and fragmentability. Mathematika 34 (1987), 258-281. DOI 10.1112/S0025579300013504 | MR 0933504 | Zbl 0654.46017
[9] Namioka, I.: On generalizations of Radon-Nikodým compact spaces. Proceedings of the 16th Summer Conference on General Topology and its Applications (New York). Topology Proc. 26 (2001/02), 741-750. MR 2032847
[10] Orihuela, J., Schachermayer, W., Valdivia, M.: Every Radon-Nikodým Corson compact space is Eberlein compact. Studia Math. 98 (1991), 157-174. DOI 10.4064/sm-98-2-157-174 | MR 1100920 | Zbl 0771.46015
[11] Douwen, E. K. van: The integers and topology. Handbook of set-theoretic topology, 111-167, North-Holland, Amsterdam (1984). MR 0776622
Partner of
EuDML logo