Previous |  Up |  Next

Article

Title: Some examples of continuous images of Radon-Nikodým compact spaces (English)
Author: Arvanitakis, Alexander D.
Author: Avilés, Antonio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 1027-1038
Summary lang: English
.
Category: math
.
Summary: We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images. (English)
Keyword: Radon-Nikodým compact
MSC: 46B26
MSC: 54G12
idZBL: Zbl 1224.46030
idMR: MR2563575
.
Date available: 2010-07-20T15:55:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140534
.
Reference: [1] Arvanitakis, A. D.: Some remarks on Radon-Nikodým compact spaces.Fund. Math. 172 (2002), 41-60. Zbl 1012.46021, MR 1898402, 10.4064/fm172-1-4
Reference: [2] Avilés, A.: Radon-Nikodým compact spaces of low weight and Banach spaces.Studia Math. 166 (2005), 71-82. MR 2108319, 10.4064/sm166-1-5
Reference: [3] Avilés, A.: Linearly ordered Radon-Nikodým compact spaces.Topology Appl. 154 (2007), 404-409. MR 2278688, 10.1016/j.topol.2006.05.004
Reference: [4] Fabian, M.: Gâteaux differentiability of convex functions and topology. Weak Asplund spaces.Canadian Mathematical Society Series of Monographs and Advanced Texts. New York. Zbl 0883.46011, MR 1461271
Reference: [5] Fabian, M.: Overclasses of the class of Radon-Nikodým compact spaces.Methods in Banach space theory. Proceedings of the V conference on Banach spaces, Cáceres, Spain, September 13-18, 2004. Cambridge: Cambridge University Press. London Mathematical Society Lecture Note Series 337 197-214 (2006). Zbl 1149.46017, MR 2326387
Reference: [6] Fabian, M., Heisler, M., Matoušková, E.: Remarks on continuous images of Radon-Nikodým compacta.Commentat. Math. Univ. Carol. 39 (1998), 59-69. MR 1622332
Reference: [7] Iancu, M., Watson, S.: On continuous images of Radon-Nikodým compact spaces through the metric characterization.Topol. Proc. 26 (2001-2002), 677-693. MR 2032843
Reference: [8] Namioka, I.: Radon-Nikodým compact spaces and fragmentability.Mathematika 34 (1987), 258-281. Zbl 0654.46017, MR 0933504, 10.1112/S0025579300013504
Reference: [9] Namioka, I.: On generalizations of Radon-Nikodým compact spaces.Proceedings of the 16th Summer Conference on General Topology and its Applications (New York). Topology Proc. 26 (2001/02), 741-750. MR 2032847
Reference: [10] Orihuela, J., Schachermayer, W., Valdivia, M.: Every Radon-Nikodým Corson compact space is Eberlein compact.Studia Math. 98 (1991), 157-174. Zbl 0771.46015, MR 1100920, 10.4064/sm-98-2-157-174
Reference: [11] Douwen, E. K. van: The integers and topology.Handbook of set-theoretic topology, 111-167, North-Holland, Amsterdam (1984). MR 0776622
.

Files

Files Size Format View
CzechMathJ_59-2009-4_13.pdf 285.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo