Title:
|
On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial (English) |
Author:
|
Li, Xiao-Min |
Author:
|
Yi, Hong-Xun |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2009 |
Pages:
|
1039-1058 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible. (English) |
Keyword:
|
entire functions |
Keyword:
|
order of growth |
Keyword:
|
shared values |
Keyword:
|
uniqueness theorems |
MSC:
|
30D30 |
MSC:
|
30D35 |
idZBL:
|
Zbl 1224.30144 |
idMR:
|
MR2563576 |
. |
Date available:
|
2010-07-20T15:56:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140535 |
. |
Reference:
|
[1] Brück, R.: On entire functions which share one value CM with their first derivative.Results in Math. 30 (1996), 21-24. MR 1402421, 10.1007/BF03322176 |
Reference:
|
[2] Chen, Z. X., Yang, C. C.: Some further results on the zeros and growths of entire solutions of second order linear differential equation.Kodai Math J. 22 (1999), 273-285. MR 1700597, 10.2996/kmj/1138044047 |
Reference:
|
[3] Chen, Z. X.: The growth of solutions of $f''+{\rm e}^{-z}f'+Q(z)f=0$.Science in China (A) 31 (2001), 775-784. MR 1903625 |
Reference:
|
[4] Chang, J. M., Fang, M. L.: Entire functions that share a small function with their derivatives.Complex Variables Theory Appl. 49 (2004), 871-895. Zbl 1069.30049, MR 2101212, 10.1080/02781070410001732205 |
Reference:
|
[5] Gundersen, G. G., Yang, L. Z.: Entire functions that share one value with one or two of their derivatives.J. Math. Anal. Appl. 223 (1998), 88-95. Zbl 0911.30022, MR 1627356, 10.1006/jmaa.1998.5959 |
Reference:
|
[6] Hayman, W. K.: Meromorphic Functions.The Clarendon Press Oxford (1964). Zbl 0115.06203, MR 0164038 |
Reference:
|
[7] He, Y. Z., Xiao, X. Z.: Algebroid Functions and Ordinary Differential Equations.Science Press Beijing (1988), Chinese. |
Reference:
|
[8] Jank, G., Volkmann, L.: Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen.Birkhäuser Basel-Boston (1985). Zbl 0682.30001, MR 0820202 |
Reference:
|
[9] Laine, I.: Nevanlinna Theory and Complex Differential Equations.Walter de Gruyter Berlin (1993). MR 1207139 |
Reference:
|
[10] Ngoan, V., Ostrovskij, I. V.: The logarithmic derivative of a meromorphic function. (Russian).Dokl. Akad. Nauk Arm. SSR 41 (1965), 272-277. MR 0192057 |
Reference:
|
[11] Rubel, L., Yang, C. C.: Values shared by an entire function and its derivative.in``Complex Analysis, Kentucky 1976'' (Proc. Conf.), Lecture Notes in Mathematics, Vol. 599, pp. 101-103, Springer-Verlag, Berlin, 1977. Zbl 0362.30026, MR 0460640 |
Reference:
|
[12] Valiron, G.: Lectures on the General Theory of Integral Functions.Edouarard Privat Toulouse (1923) JFM 50.0254.01. |
Reference:
|
[13] Wang, J. P.: Entire functions that share a polynomial with one of their derivatives.Kodai Math J. 27 (2004), 144-151. Zbl 1067.30067, MR 2069765, 10.2996/kmj/1093351321 |
Reference:
|
[14] Yang, L.: Value Distribution Theory.Springer-Verlag Berlin Heidelberg (1993). Zbl 0790.30018, MR 1301781 |
Reference:
|
[15] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions.Kluwer Academic Publishers Dordrecht/Boston/London (2003). Zbl 1070.30011, MR 2105668 |
Reference:
|
[16] Yang, L. Z.: Solution of a differential equation and its applications.Kodai Math J. 22 (1999), 458-464. Zbl 1004.30021, MR 1727305, 10.2996/kmj/1138044097 |
Reference:
|
[17] Chuang, C. T.: Sur la comparaison de la croissance d'une fonction méromorphe et celle de sa dérivée.Bull. Sci. Math. 75 (1951), 171-190. MR 0045822 |
. |