Previous |  Up |  Next

Article

Title: Ring extensions with some finiteness conditions on the set of intermediate rings (English)
Author: Jaballah, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 117-124
Summary lang: English
.
Category: math
.
Summary: A ring extension $R\subseteq S$ is said to be FO if it has only finitely many intermediate rings. $R\subseteq S$ is said to be FC if each chain of distinct intermediate rings in this extension is finite. We establish several necessary and sufficient conditions for the ring extension $R\subseteq S$ to be FO or FC together with several other finiteness conditions on the set of intermediate rings. As a corollary we show that each integrally closed ring extension with finite length chains of intermediate rings is necessarily a normal pair with only finitely many intermediate rings. We also obtain as a corollary several new and old characterizations of Prüfer and integral domains satisfying the corresponding finiteness conditions. (English)
Keyword: integral domain
Keyword: intermediate ring
Keyword: overring
Keyword: integrally closed
Keyword: Prüfer domain
Keyword: residually algebraic pair
Keyword: normal pair
Keyword: primitive extension
Keyword: a.c.c.
Keyword: d.c.c.
Keyword: minimal condition
Keyword: maximal condition
Keyword: affine extension
Keyword: Dilworth number
Keyword: width of an ordered set
MSC: 13B02
MSC: 13B22
MSC: 13E15
MSC: 13E99
MSC: 13F05
MSC: 13G05
idZBL: Zbl 1224.13011
idMR: MR2595076
.
Date available: 2010-07-20T16:19:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140555
.
Reference: [1] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598
Reference: [2] Badawi, A., Jaballah, A.: Some finiteness conditions on the set of overrings of a $\phi $-ring.Houston J. Math. 34 (2008), 397-408. Zbl 1143.13010, MR 2417400
Reference: [3] Nasr, M. B., Jaballah, A.: Counting intermediate rings in normal pairs.Expo. Math. 26 (2008), 163-175. Zbl 1142.13004, MR 2413833, 10.1016/j.exmath.2007.09.002
Reference: [4] Davis, E. D.: Overrings of commutative rings. III: Normal pairs.Trans. Amer. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 0325599
Reference: [5] Dobbs, D., Fontana, M.: Universally incomparable ring homomorphisms.Bull. Aust. Math. Soc. 29 (1984), 289-302. Zbl 0535.13006, MR 0748722, 10.1017/S0004972700021547
Reference: [6] Fontana, M., Huckaba, J. A., Papick, I. J.: Prüfer Domains.Marcel Dekker New York (1997). Zbl 0861.13006, MR 1413297
Reference: [7] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain.Proc. Am. Math. Soc. 131 (2003), 2337-2346. Zbl 1017.13009, MR 1974630, 10.1090/S0002-9939-02-06816-8
Reference: [8] Gilmer, R., Hoffman, J.: A characterization of Prüfer domains in terms of polynomials.Pacific J. Math. 60 (1975), 81-85. Zbl 0307.13011, MR 0412175, 10.2140/pjm.1975.60.81
Reference: [9] Jaballah, A.: A lower bound for the number of intermediary rings.Commun. Algebra 27 (1999), 1307-1311. Zbl 0972.13008, MR 1669083, 10.1080/00927879908826495
Reference: [10] Jaballah, A.: Finiteness of the set of intermediary rings in normal pairs.Saitama Math. J. 17 (1999), 59-61. Zbl 1073.13500, MR 1740247
Reference: [11] Jaballah, A.: The number of overrings of an integrally closed domain.Expo. Math. 23 (2005), 353-360. Zbl 1100.13008, MR 2186740, 10.1016/j.exmath.2005.02.003
Reference: [12] Schröder, Bernd S. W.: Ordered Sets: an Introduction.Birkhäuser Boston (2003). MR 1944415
.

Files

Files Size Format View
CzechMathJ_60-2010-1_10.pdf 234.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo