Title:
|
Ring extensions with some finiteness conditions on the set of intermediate rings (English) |
Author:
|
Jaballah, Ali |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
117-124 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A ring extension $R\subseteq S$ is said to be FO if it has only finitely many intermediate rings. $R\subseteq S$ is said to be FC if each chain of distinct intermediate rings in this extension is finite. We establish several necessary and sufficient conditions for the ring extension $R\subseteq S$ to be FO or FC together with several other finiteness conditions on the set of intermediate rings. As a corollary we show that each integrally closed ring extension with finite length chains of intermediate rings is necessarily a normal pair with only finitely many intermediate rings. We also obtain as a corollary several new and old characterizations of Prüfer and integral domains satisfying the corresponding finiteness conditions. (English) |
Keyword:
|
integral domain |
Keyword:
|
intermediate ring |
Keyword:
|
overring |
Keyword:
|
integrally closed |
Keyword:
|
Prüfer domain |
Keyword:
|
residually algebraic pair |
Keyword:
|
normal pair |
Keyword:
|
primitive extension |
Keyword:
|
a.c.c. |
Keyword:
|
d.c.c. |
Keyword:
|
minimal condition |
Keyword:
|
maximal condition |
Keyword:
|
affine extension |
Keyword:
|
Dilworth number |
Keyword:
|
width of an ordered set |
MSC:
|
13B02 |
MSC:
|
13B22 |
MSC:
|
13E15 |
MSC:
|
13E99 |
MSC:
|
13F05 |
MSC:
|
13G05 |
idZBL:
|
Zbl 1224.13011 |
idMR:
|
MR2595076 |
. |
Date available:
|
2010-07-20T16:19:57Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140555 |
. |
Reference:
|
[1] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598 |
Reference:
|
[2] Badawi, A., Jaballah, A.: Some finiteness conditions on the set of overrings of a $\phi $-ring.Houston J. Math. 34 (2008), 397-408. Zbl 1143.13010, MR 2417400 |
Reference:
|
[3] Nasr, M. B., Jaballah, A.: Counting intermediate rings in normal pairs.Expo. Math. 26 (2008), 163-175. Zbl 1142.13004, MR 2413833, 10.1016/j.exmath.2007.09.002 |
Reference:
|
[4] Davis, E. D.: Overrings of commutative rings. III: Normal pairs.Trans. Amer. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 0325599 |
Reference:
|
[5] Dobbs, D., Fontana, M.: Universally incomparable ring homomorphisms.Bull. Aust. Math. Soc. 29 (1984), 289-302. Zbl 0535.13006, MR 0748722, 10.1017/S0004972700021547 |
Reference:
|
[6] Fontana, M., Huckaba, J. A., Papick, I. J.: Prüfer Domains.Marcel Dekker New York (1997). Zbl 0861.13006, MR 1413297 |
Reference:
|
[7] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain.Proc. Am. Math. Soc. 131 (2003), 2337-2346. Zbl 1017.13009, MR 1974630, 10.1090/S0002-9939-02-06816-8 |
Reference:
|
[8] Gilmer, R., Hoffman, J.: A characterization of Prüfer domains in terms of polynomials.Pacific J. Math. 60 (1975), 81-85. Zbl 0307.13011, MR 0412175, 10.2140/pjm.1975.60.81 |
Reference:
|
[9] Jaballah, A.: A lower bound for the number of intermediary rings.Commun. Algebra 27 (1999), 1307-1311. Zbl 0972.13008, MR 1669083, 10.1080/00927879908826495 |
Reference:
|
[10] Jaballah, A.: Finiteness of the set of intermediary rings in normal pairs.Saitama Math. J. 17 (1999), 59-61. Zbl 1073.13500, MR 1740247 |
Reference:
|
[11] Jaballah, A.: The number of overrings of an integrally closed domain.Expo. Math. 23 (2005), 353-360. Zbl 1100.13008, MR 2186740, 10.1016/j.exmath.2005.02.003 |
Reference:
|
[12] Schröder, Bernd S. W.: Ordered Sets: an Introduction.Birkhäuser Boston (2003). MR 1944415 |
. |