Previous |  Up |  Next

Article

Title: On maximal monotone operators with relatively compact range (English)
Author: Zagrodny, Dariusz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 105-116
Summary lang: English
.
Category: math
.
Summary: It is shown that every maximal monotone operator on a real Banach space with relatively compact range is of type NI. Moreover, if the space has a separable dual space then every maximally monotone operator $T$ can be approximated by a sequence of maximal monotone operators of type NI, which converge to $T$ in a reasonable sense (in the sense of Kuratowski-Painleve convergence). (English)
Keyword: nonlinear operators
Keyword: maximal monotone operators
Keyword: range of maximal monotone operator
Keyword: an approximation method of maximal monotone operators
MSC: 47H05
idZBL: Zbl 1220.47068
idMR: MR2595075
.
Date available: 2010-07-20T16:18:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140554
.
Reference: [1] Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen.Arch. Math. 15 (1964), 445-447 German. Zbl 0129.09203, MR 0170189, 10.1007/BF01589229
Reference: [2] Fitzpatrick, S. P., Phelps, R. R.: Bounded approximants to monotone operators on Banach spaces.Ann. Inst. Henri Poincaré 9 (1992), 573-595. Zbl 0818.47052, MR 1191009, 10.1016/S0294-1449(16)30230-X
Reference: [3] Holmes, R. B.: Geometric Functional Analysis and its Applications.Springer New York (1975). Zbl 0336.46001, MR 0410335
Reference: [4] Phelps, R. R.: Lecture on maximal monotone operators.Lecture given at Prague/Paseky, Summer school, arXiv:math/9302209v1 [math.FA] (1993). MR 1627478
Reference: [5] Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364.Springer Berlin (1989). MR 0984602
Reference: [6] Rockafellar, R. T.: On the virtual convexity of the domain and range of a nonlinear maximal monotone operator.Math. Ann. 185 (1970), 81-90. Zbl 0181.42202, MR 0259697, 10.1007/BF01359698
Reference: [7] Rudin, W.: Functional Analysis (2nd edition).McGraw-Hill New York (1991). MR 1157815
Reference: [8] Simons, S.: From Hahn-Banach to Monotonicity. Lecture Notes in Mathematics 1693 (2nd expanded ed.).Springer Berlin (2008). MR 2386931
Reference: [9] Simons, S.: Minimax and Monotonicity. Lecture Notes in Mathematics 1693.Springer Berlin (1998). MR 1723737
Reference: [10] Zagrodny, D.: The closure of the domain and the range of a maximal monotone multifunction of type NI.Set-Valued Anal. 16 (2008), 759-783. Zbl 1173.47031, MR 2465516, 10.1007/s11228-008-0087-7
Reference: [11] Zeidler, E.: Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators.Springer Berlin (1990). Zbl 0684.47029, MR 1033498
.

Files

Files Size Format View
CzechMathJ_60-2010-1_9.pdf 262.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo