Previous |  Up |  Next

Article

Title: A new type of orthogonality for normed planes (English)
Author: Martini, Horst
Author: Spirova, Margarita
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 339-349
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce a new type of orthogonality for real normed planes which coincides with usual orthogonality in the Euclidean situation. With the help of this type of orthogonality we derive several characterizations of the Euclidean plane among all normed planes, all of them yielding also characteristic properties of inner product spaces among real normed linear spaces of dimensions $d\geq 3$. (English)
Keyword: chordal orthogonality
Keyword: Feuerbach circle
Keyword: inner product space
Keyword: James orthogonality
Keyword: Minkowski plane
Keyword: normed linear space
Keyword: normed plane
Keyword: orthocentricity
Keyword: Wallace line
MSC: 46B20
MSC: 46C15
MSC: 52A21
idZBL: Zbl 1224.46026
idMR: MR2657953
.
Date available: 2010-07-20T16:42:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140573
.
Reference: [1] Alonso, J., Martini, H., Mustafaev, Z.: On orthogonal chords in normed planes.(to appear) in Rocky Mountains J. Math. MR 2845932
Reference: [2] Amir, D.: Characterizations of Inner Product Spaces.Birkhäuser Verlag, Basel-Boston-Stuttgart (1986). Zbl 0617.46030, MR 0897527
Reference: [3] Asplund, E., Grünbaum, B.: On the geometry of Minkowski planes.Enseign. Math. 6 (1960), 299-306. MR 0137023
Reference: [4] Benitez, C.: Orthogonality in normed linear spaces: classification of the different concepts and some open problems.Revista Mat. Univ. Compl. Madrid 2 (1989), 53-57. MR 1057208
Reference: [5] Birkhoff, G.: Orthogonality in linear metric spaces.Duke Math. J. 1 (1935), 169-172 \JFM 61.0634.01. Zbl 0012.30604, MR 1545873, 10.1215/S0012-7094-35-00115-6
Reference: [6] Hofmann, J. E.: Zur elementaren Dreiecksgeometrie in der komplexen Ebene.Enseign. Math. 4 (1958), 178-211. Zbl 0085.14803, MR 0102768
Reference: [7] James, R. C.: Orthogonality in normed linear spaces.Duke Math. J. 12 (1945), 291-301. Zbl 0060.26202, MR 0012199, 10.1215/S0012-7094-45-01223-3
Reference: [8] James, R. C.: Inner product in normed linear spaces.Bull. Amer. Math. Soc. 53 (1947), 559-566. MR 0021242, 10.1090/S0002-9904-1947-08831-5
Reference: [9] Martini, H.: The three-circles theorem, Clifford configurations, and equilateral zonotopes.Proc. 4th Internat. Congr. Geometry (Thessaloniki, 1996) N. K. Artémiadis and N. K. Stephanidis, Thessaloniki (1997), 281-292. Zbl 0888.51018, MR 1470989
Reference: [10] Martini, H., Spirova, M.: The Feuerbach circle and orthocentricity in normed planes.Enseign. Math. 53 (2007), 237-258. MR 2455944
Reference: [11] Martini, H., Spirova, M.: Clifford's chain of theorems in strictly convex Minkowski planes.Publ. Math. Debrecen 72 (2008), 371-383. Zbl 1174.51005, MR 2406927
Reference: [12] Martini, H., Swanepoel, K. J., Weiss, G.: The geometry of Minkowski spaces-a survey, Part I.Expositiones Math. 19 (2001), 97-142. MR 1835964, 10.1016/S0723-0869(01)80025-6
Reference: [13] Thompson, A. C.: Minkowski Geometry.Encyclopedia of Mathematics and its Applications, Vol. 63, Cambridge University Press, Cambridge (1996). Zbl 0868.52001, MR 1406315
Reference: [14] Weiss, G.: The concepts of triangle orthocenters in Minkowski planes.J. Geom. 74 (2002), 145-156. Zbl 1028.51005, MR 1940598, 10.1007/PL00012533
.

Files

Files Size Format View
CzechMathJ_60-2010-2_4.pdf 265.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo