Previous |  Up |  Next

Article

Title: On some inequalities in holomorphic function theory in polydisk related to diagonal mapping (English)
Author: Shamoyan, Romi F.
Author: Mihić, Olivera R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 351-370
Summary lang: English
.
Category: math
.
Summary: We present a description of the diagonal of several spaces in the polydisk. We also generalize some previously known contentions and obtain some new assertions on the diagonal map using maximal functions and vector valued embedding theorems, and integral representations based on finite Blaschke products. All our results were previously known in the unit disk. (English)
Keyword: polydisk
Keyword: diagonal mapping
Keyword: Hardy classes
Keyword: holomorphic spaces
MSC: 32A18
idZBL: Zbl 1224.32004
idMR: MR2657954
.
Date available: 2010-07-20T16:43:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140574
.
Reference: [1] Aleksandrov, A. V.: Essays on non locally convex Hardy classes. Lecture notes in Mathematics.Springer-Verlag, Complex Analysis and spectral theory V. V. Havin and N. K. Nikolski (1981), 1-99. MR 0643380, 10.1007/BFb0096996
Reference: [2] Amar, E., Menini, C.: A counterexample to the corona theorem for operators on $H^2(D^n)$.Pacific J. Math. 206 (2002), 257-268. MR 1926777
Reference: [3] Clark, D.: Restrictions of $H^p$ functions in the polydisk.Amer. J. Math. 110 (1988), 1119-1152. MR 0970122, 10.2307/2374688
Reference: [4] Coifman, R., Meyer, Y., Stein, E.: Some new functional spaces and their applications to harmonic analysis.J. Funct. Anal. 62 (1985), 304-335. MR 0791851, 10.1016/0022-1236(85)90007-2
Reference: [5] Djrbashian, A. E., Shamoyan, F. A.: Topics in the Theory of $A^p_{\alpha}$ Spaces.Leipzig, Teubner (1988). Zbl 0667.30032, MR 1021691
Reference: [6] Duren, P. L., Shields, A. L.: Restriction of $H^p$ functions on the diagonal of the polydisk.Duke Math. J. 42 (1975), 751-753. MR 0402101, 10.1215/S0012-7094-75-04262-3
Reference: [7] Grafakos, L.: Classical and modern Fourier analysis.Prentice Hall (2004). Zbl 1148.42001, MR 2449250
Reference: [8] Jevtic, M., Pavlovic, M., Shamoyan, R.: A note on diagonal mapping theorem in spaces of analytic functions in the unit polydisk.Publ. Math. Debrecen 74/1-2 (2009), 1-14. MR 2490421
Reference: [9] Mazya, V.: Sobolev Spaces.Springer-Verlag, New York (1985). MR 0817985
Reference: [10] Ren, G., Shi, J.: The diagonal mapping in mixed norm spaces.Studia Math. 2 (2004), 103-117. Zbl 1050.32006, MR 2047374, 10.4064/sm163-2-1
Reference: [11] Rudin, W.: Function theory in polydisks.Benjamin, New York (1969). MR 0255841
Reference: [12] Shamoian, F. A.: Embedding theorems and characterization of traces in the spaces $H^p(U^n),$ $p\in (0,\infty)$.Mat. Sbornik, Russian 3 (1978), 709-725.
Reference: [13] Shamoian, F. A.: Diagonal mapping and questions of representations in spaces of holomorphic functions in polydisk.Siberian Math. J. Russian 31 (1990), 197-215. MR 1065594
Reference: [14] Shamoyan, R. F.: On the action of Hankel operators in bidisk and subspaces in $H^{\infty}$ connected with inner functions in the unit disk.Doklady BAN, Bulgaria 60 (2007), 929-934. Zbl 1145.47025, MR 2368752
Reference: [15] Seneta, E.: Regularly varying functions.Springer-Verlag, New York (1976). Zbl 0324.26002, MR 0453936
Reference: [16] Shapiro, J.: Mackey topologies, reproducing kernels and diagonal maps on the Hardy and Bergman spaces.Duke Math. J. 43 (1976), 187-202. MR 0500100, 10.1215/S0012-7094-76-04316-7
Reference: [17] Li, Songxiao, Shamoyan, R. F.: On some properties of a differential operator on the polydisk.Banach J. Math. Anal. (2009), 68-84. MR 2461748
Reference: [18] Verbitsky, I.: Multipliers in spaces with fractional norms and inner functions.Siberian Math. J. Russian 150 (1985), 51-72. MR 0788329
.

Files

Files Size Format View
CzechMathJ_60-2010-2_5.pdf 332.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo