Previous |  Up |  Next

Article

Title: Components and inductive dimensions of compact spaces (English)
Author: Krzempek, Jerzy
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 445-456
Summary lang: English
.
Category: math
.
Summary: It is shown that for every pair of natural numbers $m\geq n\geq 1$, there exists a compact Fréchet space $X_{m,n}$ such that \item {(a)} $\mathop{\rm dim}X_{m,n}=n$, $\mathop{\rm ind}X_{m,n}=\mathop{\rm Ind}X_{m,n}=m$, and \item {(b)} every component of $X_{m,n}$ is homeomorphic to the $n$-dimensional cube $I^n$. \endgraf \noindent This yields new counter-examples to the theorem on dimension-lowering maps in the cases of inductive dimensions. (English)
Keyword: inductive dimension
Keyword: theorem on dimension-lowering maps
Keyword: component.
MSC: 54F45
idZBL: Zbl 1224.54077
idMR: MR2657961
.
Date available: 2010-07-20T16:51:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140581
.
Reference: [1] Arkhangel'skiǐ, A. V.: The spectrum of frequencies of a topological space and the product operation.Tr. Mosk. Mat. Obshch. 40 (1979), 171-206 Russian. MR 0550259
Reference: [2] Charalambous, M. G.: Two new inductive dimension functions for topological spaces.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 18 (1975), 15-25. MR 0420576
Reference: [3] Charalambous, M. G., Chatyrko, V. A: Some estimates of the inductive dimensions of the union of two sets.Topology Appl. 146-147 (2005), 227-238. Zbl 1063.54025, MR 2107148
Reference: [4] Chatyrko, V. A.: Compact spaces with noncoinciding dimensions.Tr. Mosk. Mat. Obshch. 53 (1990), 192-228, 261 Russian English transl.: Trans. Moscow Math. Soc. (1991), 199-236. MR 1097997
Reference: [5] Chatyrko, V. A.: On properties of subsets of $[0,\omega_\mathfrak{c}]\times I$.Quest. Answers Gen. Topology 26 (2008), 97-104. MR 2462305
Reference: [6] Chatyrko, V. A., Kozlov, K. L., Pasynkov, B. A.: On an approach to constructing compacta with different dimensions ${\rm dim}$ and ${\rm ind}$.Topology Appl. 107 (2000), 39-55. MR 1783832, 10.1016/S0166-8641(99)00092-9
Reference: [7] Chatyrko, V. A., Kozlov, K. L., Pasynkov, B. A.: On another approach to constructing compacta with different dimensions ${\rm dim}$ and ${\rm ind}$.Topology Proc. 25 (2000), 43-72. MR 1925677
Reference: [8] Engelking, R.: General Topology.Heldermann Verlag Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [9] Engelking, R.: Theory of Dimensions, Finite and Infinite.Heldermann Lemgo (1995). Zbl 0872.54002, MR 1363947
Reference: [10] Fedorchuk, V. V.: Fully closed maps and their applications.Fundam. Prikl. Mat. 9 (2003), 105-235 Russian English transl.: J. Math. Sci. (N. Y.) 136 (2006), 4201-4292. MR 2093414
Reference: [11] Filippov, V. V.: On the inductive dimension of the product of bicompacta.Dokl. Akad. Nauk SSSR 202 (1972), 1016-1019 Russian English transl.: Sov. Math., Dokl. 13 (1972), 250-254. Zbl 0243.54032, MR 0292043
Reference: [12] Ivanov, A. V.: The dimension of not perfectly normal spaces.Vestnik Moskov. Univ. Ser. I Mat. Mekh. 31 no. 4 (1976), 21-27 Russian English transl.: Moscow Univ. Math. Bull. 31 (1976), 64-69. MR 0423319
Reference: [13] Krzempek, J.: Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua.Preprint in Math Arxiv. Available at http://arxiv.org/ (arXiv:0805.2087v3) (to appear) in Colloq. Math. MR 2672270
Reference: [14] Lokucievskiǐ, O. V.: On the dimension of bicompacta.Dokl. Akad. Nauk SSSR 67 (1949), 217-219 Russian. MR 0030750
Reference: [15] Lunc, A. L.: A bicompactum whose inductive dimension is larger than the covering dimension.Dokl. Akad. Nauk SSSR 66 (1949), 801-803 Russian. MR 0030749
Reference: [16] Vopěnka, P.: On the dimension of compact spaces.Czechoslovak Math. J. 8 (1958), 319-327 Russian. MR 0102068
.

Files

Files Size Format View
CzechMathJ_60-2010-2_12.pdf 293.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo