Previous |  Up |  Next

Article

Title: Quasi-permutation polynomials (English)
Author: Laohakosol, Vichian
Author: Janphaisaeng, Suphawan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 457-488
Summary lang: English
.
Category: math
.
Summary: A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established. Different types of quasi-permutation polynomials and the problem of counting quasi-permutation polynomials of fixed degree are investigated. (English)
Keyword: finite fields
Keyword: permutation polynomials
MSC: 11T55
MSC: 12E05
MSC: 12Y05
idZBL: Zbl 1224.11096
idMR: MR2657962
.
Date available: 2010-07-20T16:52:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140582
.
Reference: [1] Carlitz, L., Lutz, J. A.: A characterization of permutation polynomials over a finite field.Am. Math. Mon. 85 (1978), 746-748. Zbl 0406.12011, MR 0514040, 10.2307/2321681
Reference: [2] Chu, W., Golomb, S. W.: Circular Tuscan-$k$ arrays from permutation binomials.J. Comb. Theory, Ser. A 97 (2002), 195-202. Zbl 1009.05032, MR 1879136, 10.1006/jcta.2001.3221
Reference: [3] Das, P.: The number of permutation polynomials of a given degree over a finite field.Finite Fields Appl. 8 (2002), 478-490. Zbl 1029.11066, MR 1933619
Reference: [4] Gantmacher, F. R.: The Theory of Matrices, Volume I.Chelsea, New York (1977).
Reference: [5] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field?.Am. Math. Mon. 95 (1988), 243-246. Zbl 0653.12010, MR 1541277, 10.2307/2323626
Reference: [6] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field? II..Am. Math. Mon. 100 (1993), 71-74. Zbl 0777.11054, MR 1542258, 10.2307/2324822
Reference: [7] Lidl, R., Niederreiter, H.: Finite Fields.Addison-Wesley Reading (1983). Zbl 0554.12010, MR 0746963
Reference: [8] Small, C.: Permutation binomials.Int. J. Math. Math. Sci. 13 (1990), 337-342. Zbl 0702.11085, MR 1052532, 10.1155/S0161171290000497
Reference: [9] Wan, D., Lidl, R.: Permutation polynomials of the form $x^r f(x^{(q-1)/d})$ and their group structure.Monatsh. Math. 112 (1991), 149-163. MR 1126814, 10.1007/BF01525801
Reference: [10] Wan, Z.-X.: Lectures on Finite Fields and Galois Rings.World Scientific River Edge (2003). Zbl 1028.11072, MR 2008834
Reference: [11] Zhou, K.: A remark on linear permutation polynomials.Finite Fields Appl. 14 (2008), 532-536. MR 2401993, 10.1016/j.ffa.2007.07.002
.

Files

Files Size Format View
CzechMathJ_60-2010-2_13.pdf 383.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo