Previous |  Up |  Next

Article

Title: Interpolation of bounded sequences (English)
Author: Tugores, Francesc
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 513-516
Summary lang: English
.
Category: math
.
Summary: This paper deals with an interpolation problem in the open unit disc $\mathbb D$ of the complex plane. We characterize the sequences in a Stolz angle of $\mathbb D $, verifying that the bounded sequences are interpolated on them by a certain class of not bounded holomorphic functions on $\mathbb D $, but very close to the bounded ones. We prove that these interpolating sequences are also uniformly separated, as in the case of the interpolation by bounded holomorphic functions. (English)
Keyword: interpolating sequence
Keyword: Carleson's theorem
Keyword: uniformly separated
Keyword: Blaschke product
Keyword: Lipschitz class
MSC: 30D50
MSC: 30E05
MSC: 41A05
idZBL: Zbl 1224.30175
idMR: MR2657965
.
Date available: 2010-07-20T16:54:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140585
.
Reference: [1] Attele, K. R. M.: Interpolating sequences for the derivatives of Bloch functions.Glasgow Math. J. 34 (1992), 35-41. Zbl 0751.30032, MR 1145630, 10.1017/S0017089500008521
Reference: [2] Carleson, L.: An interpolation problem for bounded analytic functions.Amer. J. Math. 80 (1958), 921-930. Zbl 0085.06504, MR 0117349, 10.2307/2372840
Reference: [3] Kotochigov, A. M.: Free interpolation in the spaces of analytic functions with derivative of order s from the Hardy space.J. Math. Sci. (N.Y.) 129 (2005), 4022-4039. Zbl 1151.30339, MR 2037538, 10.1007/s10958-005-0339-0
Reference: [4] Kronstadt, E. P.: Interpolating sequences for functions satisfying a Lipschitz condition.Pacific J. Math. 63 (1976), 169-177. Zbl 0306.30030, MR 0412431, 10.2140/pjm.1976.63.169
.

Files

Files Size Format View
CzechMathJ_60-2010-2_16.pdf 197.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo