Previous |  Up |  Next

Article

Title: Structure of unitary groups over finite group rings and its application (English)
Author: Nan, Jizhu
Author: Qin, Yufang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 495-512
Summary lang: English
.
Category: math
.
Summary: In this paper, we determine all the normal forms of Hermitian matrices over finite group rings $R=F_{q^2}G$, where $q=p^{\alpha }$, $G$ is a commutative $p$-group with order $p^{\beta }$. Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over $R$ through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters. (English)
Keyword: finite group ring
Keyword: BN-pair
Keyword: authentication code
MSC: 19G24
MSC: 20E42
MSC: 94A60
idZBL: Zbl 1208.20047
idMR: MR2657964
.
Date available: 2010-07-20T16:54:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140584
.
Reference: [1] Brown, K. S.: Buildings.Springer-Verlag New York (1989). Zbl 0715.20017, MR 0969123
Reference: [2] Gao, Y.: Computation of the orders of unitary groups over finite local rings.Acta Math. Scientia 25A (2005), 564-568 Chinese. Zbl 1101.20305, MR 2175620
Reference: [3] Karpilovsky, G.: Commutative Group Algebra.Marcel Dekker New York (1983). MR 0704185
Reference: [4] Wan, Z. X.: Further construction of Cartesian authentication codes from unitary geometry.Designs, Codes and Cryptology 2 (1992), 333-356. MR 1194775, 10.1007/BF00125202
Reference: [5] Wan, Z. X.: Geometry of Classical Groups over Finite Fields.Studentlitteratur Lund (1993). Zbl 0817.51001, MR 1254440
Reference: [6] You, H.: Sylow subgroups of classical groups over finite commutative rings.Acta Math. Sinica 39 (1996), 33-40 Chinese. Zbl 0863.20020, MR 1412901
Reference: [7] You, H., Nan, J. Z.: Using normal form of matrices over finite fields to construct Cartesian authentication codes.J. Math. Res. Exposition 18 (1998), 341-346. Zbl 0953.94024, MR 1645903
Reference: [8] You, H.: Overgroups of symplectic group in linear group over commutative rings.J. Algebra 282 (2004), 23-32. Zbl 1067.20065, MR 2095570, 10.1016/j.jalgebra.2004.07.036
.

Files

Files Size Format View
CzechMathJ_60-2010-2_15.pdf 289.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo