Title:
|
A direct approach to the Weiss conjecture for bounded analytic semigroups (English) |
Author:
|
Hamid, Bounit |
Author:
|
Adberrahim, Driouich |
Author:
|
Omar, El-Mennaoui |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
527-539 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded $H^{\infty }$-calculus and is based on elementary analysis. (English) |
Keyword:
|
infinite dimensional systems |
Keyword:
|
analytic semigroups |
Keyword:
|
unbounded observation operator |
Keyword:
|
admissibility |
Keyword:
|
fractional power |
MSC:
|
34K35 |
MSC:
|
35F50 |
MSC:
|
35Q93 |
MSC:
|
47D06 |
MSC:
|
93B28 |
MSC:
|
93B36 |
idZBL:
|
Zbl 1220.47058 |
idMR:
|
MR2657967 |
. |
Date available:
|
2010-07-20T16:56:54Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140587 |
. |
Reference:
|
[1] Amann, H.: Linear and quasilinear Parabolic Problems. Vol. I.Birkhäuser, Basel (1995). MR 1345385 |
Reference:
|
[2] Arendt, W., Batty, C., Hieber, C., Neubrander, F.: Vector Valued Laplace transforms and Cauchy Problems.Vol. 96 of Monographes in Mathematics. Birkäuser (2001). Zbl 0978.34001, MR 1886588 |
Reference:
|
[3] Balakrishnan, A. V.: Fractional powers of closed operators and the semigroups generated by them.Pacific J. Math. 10 (1960), 419-437. Zbl 0103.33502, MR 0115096, 10.2140/pjm.1960.10.419 |
Reference:
|
[4] Engel, K.: On the characterization of admissible control and observation operators.Systems and Control Letters (1998), 34 225-227. Zbl 0909.93034, MR 1637265 |
Reference:
|
[5] Faming, G.: Admissibility of linear systems in Banach spaces.Journal of electronic Science and Technology in China (2004), 75-78. |
Reference:
|
[6] Gao, M. C., Hou, J. C.: The infinite-time admissibility of observation operators and operator Lyapunov equation.Integral Equations and Operator Theory 35 (1999), 53-64. MR 1707930, 10.1007/BF01225527 |
Reference:
|
[7] Grabowski, P.: Admissibility of observation functionals.Internat. J. Control 62 (1995), 1163-1173. Zbl 0837.93005, MR 1636622, 10.1080/00207179508921589 |
Reference:
|
[8] Grabowski, P., Callier, F. M.: Admissibility of observation operators: Semigroup criteria for admissibility.Integral Equations Operator Theory 25 (1996), 183-196. MR 1388679, 10.1007/BF01308629 |
Reference:
|
[9] Haak, B., Kunstmann, P. C.: Weighted admissibility and wellposedness of linear systems in Banach spaces.SIAM J. Control Optimization 45 2094-2118 (2007). Zbl 1126.93021, MR 2285716, 10.1137/060656139 |
Reference:
|
[10] Hansen, S., Weiss, G.: The operator Carleson measure criterion for admissibility of control operators for diagonal semigroups on $L^2$.Systems Control Letters 16 219-227 (1991). MR 1098682, 10.1016/0167-6911(91)90051-F |
Reference:
|
[11] Jacob, B., Partington, J. R.: The Weiss conjecture on admissibility of observation operators for contraction semigroups.Integral Equations and Operator Theory 40 (2001), 231-243. Zbl 1031.93107, MR 1831828, 10.1007/BF01301467 |
Reference:
|
[12] Jacob, B., Partington, J. R., Pott, S.: Admissible and weakly admissible observation operators for the right shift semigroup.Proc. Edinb. Math. Soc. 45 (2002), 353-362. Zbl 1176.47065, MR 1912645, 10.1017/S0013091500001024 |
Reference:
|
[13] Jacob, B., Zwart, H.: Counterexamples concerning observation operators for $C_0$-semigroups.SIAM J. Control Optim. 43 137-153 (2004). Zbl 1101.93042, MR 2082696, 10.1137/S0363012903423235 |
Reference:
|
[14] Komatsu, H.: Fractional power of operators.Pacific J. Math. 19 (1966), 285-346. MR 0201985, 10.2140/pjm.1966.19.285 |
Reference:
|
[15] LeMerdy, C.: The Weiss conjecture for bounded analytic semigroups.J. London Math. Soc. 67 (2003), 715-738. MR 1967702, 10.1112/S002461070200399X |
Reference:
|
[16] Partington, J. R., Pott, S.: Admissibility and exact observability of observation operators for semigroups.Irish Math. Soc. Bulletin 55 19-39 (2005). Zbl 1159.47302, MR 2185647 |
Reference:
|
[17] Partington, J. R., Weiss, G.: Admissible observation operators for the right-shift semigroup.Mathematics of Control, Signals and Systems (2000), 13 179-192. Zbl 0966.93033, MR 1784262 |
Reference:
|
[18] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, Berlin (1983). Zbl 0516.47023, MR 0710486 |
Reference:
|
[19] Staffans, O.: Well-posed linear systems.Cambridge University press, Cambridge (2005). Zbl 1057.93001, MR 2154892 |
Reference:
|
[20] Weiss, G.: Two conjectures on the admissibility of control operators.In Estimation and Control of Distributed Parameter Systems, Birkhäuser Verlag W. Desch, F. Kappel (1991), 367-378. Zbl 0763.93041, MR 1155659 |
Reference:
|
[21] Weiss, G.: Admissibility of unbounded control operators.SIAM Journal Control & Optimization 27 527-545 (1989). Zbl 0685.93043, MR 0993285, 10.1137/0327028 |
Reference:
|
[22] Weiss, G.: Admissibile observation operators for linear semigroups.Israel J. Math. 65 17-43 (1989). MR 0994732, 10.1007/BF02788172 |
Reference:
|
[23] Zwart, H., Jacob, B., Staffans, O.: Weak admissibility does not imply admissibility for analytic semigroups.Systems Control Letters 48 (2003), 341-350. Zbl 1157.93421, MR 2020649, 10.1016/S0167-6911(02)00277-3 |
Reference:
|
[24] Zwart, H. J.: Sufficient Conditions for Admissibility.Systems and Control Letters 54 973-979 (2005). Zbl 1129.93422, MR 2166288, 10.1016/j.sysconle.2005.02.009 |
. |