Previous |  Up |  Next

Article

Title: A direct approach to the Weiss conjecture for bounded analytic semigroups (English)
Author: Hamid, Bounit
Author: Adberrahim, Driouich
Author: Omar, El-Mennaoui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 527-539
Summary lang: English
.
Category: math
.
Summary: We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded $H^{\infty }$-calculus and is based on elementary analysis. (English)
Keyword: infinite dimensional systems
Keyword: analytic semigroups
Keyword: unbounded observation operator
Keyword: admissibility
Keyword: fractional power
MSC: 34K35
MSC: 35F50
MSC: 35Q93
MSC: 47D06
MSC: 93B28
MSC: 93B36
idZBL: Zbl 1220.47058
idMR: MR2657967
.
Date available: 2010-07-20T16:56:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140587
.
Reference: [1] Amann, H.: Linear and quasilinear Parabolic Problems. Vol. I.Birkhäuser, Basel (1995). MR 1345385
Reference: [2] Arendt, W., Batty, C., Hieber, C., Neubrander, F.: Vector Valued Laplace transforms and Cauchy Problems.Vol. 96 of Monographes in Mathematics. Birkäuser (2001). Zbl 0978.34001, MR 1886588
Reference: [3] Balakrishnan, A. V.: Fractional powers of closed operators and the semigroups generated by them.Pacific J. Math. 10 (1960), 419-437. Zbl 0103.33502, MR 0115096, 10.2140/pjm.1960.10.419
Reference: [4] Engel, K.: On the characterization of admissible control and observation operators.Systems and Control Letters (1998), 34 225-227. Zbl 0909.93034, MR 1637265
Reference: [5] Faming, G.: Admissibility of linear systems in Banach spaces.Journal of electronic Science and Technology in China (2004), 75-78.
Reference: [6] Gao, M. C., Hou, J. C.: The infinite-time admissibility of observation operators and operator Lyapunov equation.Integral Equations and Operator Theory 35 (1999), 53-64. MR 1707930, 10.1007/BF01225527
Reference: [7] Grabowski, P.: Admissibility of observation functionals.Internat. J. Control 62 (1995), 1163-1173. Zbl 0837.93005, MR 1636622, 10.1080/00207179508921589
Reference: [8] Grabowski, P., Callier, F. M.: Admissibility of observation operators: Semigroup criteria for admissibility.Integral Equations Operator Theory 25 (1996), 183-196. MR 1388679, 10.1007/BF01308629
Reference: [9] Haak, B., Kunstmann, P. C.: Weighted admissibility and wellposedness of linear systems in Banach spaces.SIAM J. Control Optimization 45 2094-2118 (2007). Zbl 1126.93021, MR 2285716, 10.1137/060656139
Reference: [10] Hansen, S., Weiss, G.: The operator Carleson measure criterion for admissibility of control operators for diagonal semigroups on $L^2$.Systems Control Letters 16 219-227 (1991). MR 1098682, 10.1016/0167-6911(91)90051-F
Reference: [11] Jacob, B., Partington, J. R.: The Weiss conjecture on admissibility of observation operators for contraction semigroups.Integral Equations and Operator Theory 40 (2001), 231-243. Zbl 1031.93107, MR 1831828, 10.1007/BF01301467
Reference: [12] Jacob, B., Partington, J. R., Pott, S.: Admissible and weakly admissible observation operators for the right shift semigroup.Proc. Edinb. Math. Soc. 45 (2002), 353-362. Zbl 1176.47065, MR 1912645, 10.1017/S0013091500001024
Reference: [13] Jacob, B., Zwart, H.: Counterexamples concerning observation operators for $C_0$-semigroups.SIAM J. Control Optim. 43 137-153 (2004). Zbl 1101.93042, MR 2082696, 10.1137/S0363012903423235
Reference: [14] Komatsu, H.: Fractional power of operators.Pacific J. Math. 19 (1966), 285-346. MR 0201985, 10.2140/pjm.1966.19.285
Reference: [15] LeMerdy, C.: The Weiss conjecture for bounded analytic semigroups.J. London Math. Soc. 67 (2003), 715-738. MR 1967702, 10.1112/S002461070200399X
Reference: [16] Partington, J. R., Pott, S.: Admissibility and exact observability of observation operators for semigroups.Irish Math. Soc. Bulletin 55 19-39 (2005). Zbl 1159.47302, MR 2185647
Reference: [17] Partington, J. R., Weiss, G.: Admissible observation operators for the right-shift semigroup.Mathematics of Control, Signals and Systems (2000), 13 179-192. Zbl 0966.93033, MR 1784262
Reference: [18] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, Berlin (1983). Zbl 0516.47023, MR 0710486
Reference: [19] Staffans, O.: Well-posed linear systems.Cambridge University press, Cambridge (2005). Zbl 1057.93001, MR 2154892
Reference: [20] Weiss, G.: Two conjectures on the admissibility of control operators.In Estimation and Control of Distributed Parameter Systems, Birkhäuser Verlag W. Desch, F. Kappel (1991), 367-378. Zbl 0763.93041, MR 1155659
Reference: [21] Weiss, G.: Admissibility of unbounded control operators.SIAM Journal Control & Optimization 27 527-545 (1989). Zbl 0685.93043, MR 0993285, 10.1137/0327028
Reference: [22] Weiss, G.: Admissibile observation operators for linear semigroups.Israel J. Math. 65 17-43 (1989). MR 0994732, 10.1007/BF02788172
Reference: [23] Zwart, H., Jacob, B., Staffans, O.: Weak admissibility does not imply admissibility for analytic semigroups.Systems Control Letters 48 (2003), 341-350. Zbl 1157.93421, MR 2020649, 10.1016/S0167-6911(02)00277-3
Reference: [24] Zwart, H. J.: Sufficient Conditions for Admissibility.Systems and Control Letters 54 973-979 (2005). Zbl 1129.93422, MR 2166288, 10.1016/j.sysconle.2005.02.009
.

Files

Files Size Format View
CzechMathJ_60-2010-2_18.pdf 274.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo