Previous |  Up |  Next

Article

Title: On generalized Jordan derivations of Lie triple systems (English)
Author: Najati, Abbas
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 541-547
Summary lang: English
.
Category: math
.
Summary: Under some conditions we prove that every generalized Jordan triple derivation on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan triple $\theta $-derivation on a Lie triple system is a $\theta $-derivation. (English)
Keyword: Lie triple system
Keyword: $(\varphi ,\psi )$-derivation
Keyword: Jordan triple $(\varphi ,\psi )$-derivation
Keyword: $\theta $-derivation
Keyword: Jordan triple $\theta $-derivation
MSC: 16W25
MSC: 17A36
MSC: 17A40
idZBL: Zbl 1224.17008
idMR: MR2657968
.
Date available: 2010-07-20T16:57:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140588
.
Reference: [1] Ashraf, M., Al-Shammakh, Wafa S. M.: On generalized $(\theta,\phi)$-derivations in rings.Int. J. Math. Game Theory and Algebra 12 (2002), 295-300. Zbl 1076.16512, MR 1951117
Reference: [2] Bertram, W.: The Geometry of Jordan and Lie Structures.In: Lecture Notes in Math. vol. 1754, Springer-Verlag (2000). Zbl 1014.17024, MR 1809879
Reference: [3] Brešar, M.: Jordan derivations on semiprime rings.Proc. Amer. Math. Soc. 104 (1988), 1003-1006. MR 0929422, 10.1090/S0002-9939-1988-0929422-1
Reference: [4] Brešar, M.: Jordan mappings of semiprime rings.J. Algebra 127 (1989), 218-228. MR 1029414, 10.1016/0021-8693(89)90285-8
Reference: [5] Brešar, M., Vukman, J.: Jordan $(\theta,\varphi)$-derivations.Glasnik Math. 46 (1991), 13-17. Zbl 0798.16023, MR 1269170
Reference: [6] Hvala, B.: Generalized derivations in rings.Comm. Algebra. 26 (1998), 1147-1166. Zbl 0899.16018, MR 1612208, 10.1080/00927879808826190
Reference: [7] Herstein, I. N.: Jordan derivations of prime rings.Proc. Amer. Math. Soc. 8 (1958), 1104-1110. Zbl 0216.07202, MR 0095864, 10.1090/S0002-9939-1957-0095864-2
Reference: [8] Jacobson, N.: Lie and Jordan triple systems.Amer. J. Math. 71 (1949), 149-170. Zbl 0034.16903, MR 0028305, 10.2307/2372102
Reference: [9] Jacobson, N.: General representation theory of Jordan algebras.Trans. Amer. Math. Soc. 70 (1951), 509-530. Zbl 0044.02503, MR 0041118, 10.1090/S0002-9947-1951-0041118-9
Reference: [10] Jing, W., Lu, S.: Generalized Jordan derivations on prime rings and standard operator algebras.Taiwanese J. Math. 7 (2003), 605-613. Zbl 1058.16031, MR 2017914, 10.11650/twjm/1500407580
Reference: [11] Lee, T.-K.: Generalized derivations of left faithful rings.Comm. Algebra. 27 (1999), 4057-4073. Zbl 0946.16026, MR 1700189, 10.1080/00927879908826682
Reference: [12] Lister, W. G.: A structure theory of Lie triple systems.Trans. Amer. Math. Soc. 72 (1952), 217-242. Zbl 0046.03404, MR 0045702, 10.1090/S0002-9947-1952-0045702-9
Reference: [13] Liu, C.-K., Shiue, W.-K.: Generalized Jordan triple $(\theta,\phi)$-derivations on semiprime rings.Taiwanese J. Math. 11 (2007), 1397-1406. MR 2368657, 10.11650/twjm/1500404872
Reference: [14] Vukman, J.: A note on generalized derivations of semiprime rings.Taiwanese J. Math. 11 (2007), 367-370. Zbl 1124.16030, MR 2333351, 10.11650/twjm/1500404694
.

Files

Files Size Format View
CzechMathJ_60-2010-2_19.pdf 213.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo