Previous |  Up |  Next

Article

Title: Two classes of Darboux-like, Baire one functions of two variables (English)
Author: Evans, Michael J.
Author: Humke, Paul D.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 549-569
Summary lang: English
.
Category: math
.
Summary: Among the many characterizations of the class of Baire one, Darboux real-valued functions of one real variable, the 1907 characterization of Young and the 1997 characterization of Agronsky, Ceder, and Pearson are particularly intriguing in that they yield interesting classes of functions when interpreted in the two-variable setting. We examine the relationship between these two subclasses of the real-valued Baire one defined on the unit square. (English)
Keyword: Woodcutters Problem
Keyword: Baire one
Keyword: Darboux
MSC: 26A21
MSC: 26B05
idZBL: Zbl 1224.26040
idMR: MR2657969
.
Date available: 2010-07-20T16:59:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140589
.
Reference: [1] Agronsky, S. J., Ceder, J. G., Pearson, T. L.: Some characterizations of Darboux Baire 1 functions.Real Anal. Exch. 23 (1997), 421-430. Zbl 0943.26004, MR 1640015, 10.2307/44153971
Reference: [2] Bruckner, A. M.: Differentiation of Real Functions. CRM Monograph Series, Vol. 5.American Mathematical Society (AMS) (1994). MR 1274044
Reference: [3] Cavaretta, A. S., Dahmen, W., Micchelli, C. A.: Stationary Subdivision.Mem. Am. Math. Soc. 453 (1991). Zbl 0741.41009, MR 1079033
Reference: [4] Evans, M. J., Humke, P. D.: A characterization of Baire one functions of two variables.J. Math. Anal. Appl. 335 (2007), 1-6. Zbl 1127.26003, MR 2340300, 10.1016/j.jmaa.2007.01.034
Reference: [5] Evans, M. J., Humke, P. D.: Revisiting a century-old characterization of Baire class one, Darboux functions.Am. Math. Mon. 116 (2009), 451-455. MR 2510842, 10.4169/193009709X470344
Reference: [6] Evans, M. J., Humke, P. D.: Collections of Darboux-like, Baire one functions of two variables.(to appear) in J. Appl. Anal. MR 2680539
Reference: [7] Kuratowski, K.: Topology, Vol. I.Academic Press New York (1966). Zbl 0158.40901, MR 0217751
Reference: [8] Malý, J.: The Darboux property for gradients.Real Anal. Exch. 22 (1996), 167-173. MR 1433604, 10.2307/44152741
Reference: [9] Micchelli, C. A., Prautzsch, H.: Uniform refinement of curves.Linear Algebra Appl. 114/115 (1989), 841-870. Zbl 0668.65011, MR 0986909
Reference: [10] Young, W. H.: A theorem in the theory of functions of a real variable.Rend. Circ. Mat. Palermo 24 (1907), 187-192. 10.1007/BF03015058
Reference: [11] Young, W. H.: A theorem in the theory of functions of a real variable.Rend. Circ. Mat. Palermo 24 (1907), 187-192. 10.1007/BF03015058
.

Files

Files Size Format View
CzechMathJ_60-2010-2_20.pdf 347.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo