Previous |  Up |  Next

Article

Title: On quasinilpotent equivalence of finite rank elements in Banach algebras (English)
Author: Raubenheimer, Heinrich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 589-596
Summary lang: English
.
Category: math
.
Summary: We characterize elements in a semisimple Banach algebra which are quasinilpotent equivalent to maximal finite rank elements. (English)
Keyword: maximal finite rank elements
Keyword: quasinilpotent equivalence
MSC: 46H05
MSC: 46H10
idZBL: Zbl 1224.46091
idMR: MR2672403
.
Date available: 2010-07-20T17:02:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140591
.
Reference: [1] Aupetit, B., Mouton, H. du T.: Trace and determinant in Banach algebras.Stud. Math. 121 (1996), 115-136. Zbl 0872.46028, MR 1418394
Reference: [2] Bonsall, F. F., Duncan, J.: Complete Normed Algebras.Springer New York (1973). Zbl 0271.46039, MR 0423029
Reference: [3] Colojoară, I., Foiaş, C.: Quasi-nilpotent equivalence of not necessarily commuting operators.J. Math. Mech. 15 (1966), 521-540. MR 0192344
Reference: [4] Colojoară, I., Foiaş, C.: Theory of generalized spectral operators. Mathematics and its Applications, vol. 9.Gordon and Breach, Science Publishers New York-London-Paris (1968). MR 0394282
Reference: [5] Dalla, L., Giotopoulos, S., Katseli, N.: The socle and finite-dimensionality of a semiprime Banach algebra.Stud. Math. 92 (1989), 201-204. Zbl 0691.46036, MR 0986948, 10.4064/sm-92-2-201-204
Reference: [6] Foiaş, C., Vasilescu, F.-H.: On the spectral theory of commutators.J. Math. Anal. Appl. 31 (1970), 473-486. MR 0290146, 10.1016/0022-247X(70)90001-6
Reference: [7] Giotopoulos, S., Roumeliotis, M.: Algebraic ideals of semiprime Banach algebras.Glasgow Math. J. 33 (1991), 359-363. MR 1127528, 10.1017/S0017089500008429
Reference: [8] Harte, R.: On rank one elements.Stud. Math. 117 (1995), 73-77. Zbl 0837.46036, MR 1367694, 10.4064/sm-117-1-73-77
Reference: [9] Mouton, S., Raubenheimer, H.: More spectral theory in ordered Banach algebras.Positivity 1 (1997), 305-317. Zbl 0904.46036, MR 1660397, 10.1023/A:1009717500980
Reference: [10] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras.Birkhäuser Basel-Boston-Berlin (2003). MR 1975356
Reference: [11] Puhl, J.: The trace of finite and nuclear elements in Banach algebras.Czech. Math. J. 28 (1978), 656-676. Zbl 0394.46041, MR 0506439
Reference: [12] Razpet, M.: The quasinilpotent equivalence in Banach algebras.J. Math. Anal. Appl. 166 (1992), 378-385. Zbl 0802.46064, MR 1160933, 10.1016/0022-247X(92)90304-V
.

Files

Files Size Format View
CzechMathJ_60-2010-3_1.pdf 236.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo