Title:
|
On the mean value of the generalized Dirichlet $L$-functions (English) |
Author:
|
Ma, Rong |
Author:
|
Yi, Yuan |
Author:
|
Zhang, Yulong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
3 |
Year:
|
2010 |
Pages:
|
597-620 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput. (English) |
Keyword:
|
generalized Dirichlet $L$-functions |
Keyword:
|
mean value properties |
Keyword:
|
functional equation |
Keyword:
|
asymptotic formula |
MSC:
|
11M20 |
idZBL:
|
Zbl 1224.11077 |
idMR:
|
MR2672404 |
. |
Date available:
|
2010-07-20T17:03:12Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140593 |
. |
Reference:
|
[1] Berndt, B. C.: Generalized Dirichlet series and Hecke's functional equation.Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313. MR 0225732 |
Reference:
|
[2] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. III.Trans. Amer. Math. Soc. 146 (1969), 323-342. MR 0252330, 10.1090/S0002-9947-1969-0252330-1 |
Reference:
|
[3] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. IV.Trans. Amer. Math. Soc. 149 (1970), 179-185. Zbl 0207.05504, MR 0260685 |
Reference:
|
[4] Heath-Brown, D. R.: An asymptotic series for the mean value of Dirichlet $L$-functions.Comment. Math. Helvetici 56 (1981), 148-161. Zbl 0457.10020, MR 0615623, 10.1007/BF02566206 |
Reference:
|
[5] Zhang, W. P.: On the second mean value of Dirichlet $L$-functions.Chinese Annals of Mathematics 11A (1990), 121-127. MR 1048690 |
Reference:
|
[6] Zhang, W. P., Yi, Y., He, X. L.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums.Journal of Number Theory 84 (2000), 199-213. Zbl 0958.11061, MR 1795790, 10.1006/jnth.2000.2515 |
Reference:
|
[7] Yi, Y., Zhang, W. P.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of Gauss sums.Advances in Mathematics 31 (2002), 517-526. MR 1959549 |
Reference:
|
[8] Balasubramanian, R.: A note on Dirichlet $L$-functions.Acta Arith. 38 (1980), 273-283. MR 0602193, 10.4064/aa-38-3-273-283 |
Reference:
|
[9] Titchmarsh, E. C.: The Theory of the Riemannn Zeta-function.Oxford (1951). MR 0046485 |
Reference:
|
[10] Ivic, A.: The Riemann zeta-function.The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985). Zbl 0583.10021, MR 0792089 |
Reference:
|
[11] Pan, C. D., Pan, C. B.: Elements of the Analytic Number Theory.Science Press, Beijing (1991), Chinese. |
. |