Previous |  Up |  Next

Article

Title: A cohomological Steinness criterion for holomorphically spreadable complex spaces (English)
Author: Vâjâitu, Viorel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 655-667
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,{\cal O}), \ldots , H^{n-1}(X,{\cal O})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). \endgraf This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity. (English)
Keyword: Stein space
Keyword: 1-convex space
Keyword: branched Riemannian domain
Keyword: holomorphically spreadable complex space
Keyword: structurally acyclic space
MSC: 32C15
MSC: 32C35
MSC: 32E10
MSC: 32L20
idZBL: Zbl 1224.32014
idMR: MR2672407
.
Date available: 2010-07-20T17:07:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140596
.
Reference: [1] Alessandrini, L.: On the cohomology of a holomorphically separable complex analytic space.Bolletino U.M.I. 1-A (1982), 261-208. Zbl 0491.32005, MR 0663290
Reference: [2] Bănică, C., Stănaşilă, O.: Sur les ouverts de Stein dans un espace complexe.C.R. Acad. Sci. Paris Sér. A--B 268 (1969), 1024-1027. MR 0243114
Reference: [3] Coen, S.: Annulation de la cohomologie à valeur dans le faisceau structural et espaces de Stein.Compositio Math. 37 (1978), 63-75. MR 0499295
Reference: [4] Fornæss, J.-E., Narasimhan, R.: The Levi problem on complex spaces with singularities.Math. Ann. 248 (1980), 47-72. MR 0569410, 10.1007/BF01349254
Reference: [5] Forster, O.: Some remarks on parallelizable Stein manifolds.Bull. Amer. Math. Soc. 73 (1967), 712-716. Zbl 0163.32102, MR 0218619, 10.1090/S0002-9904-1967-11839-1
Reference: [6] Grauert, H.: Characterisierung der holomorph-vollständigen komplexen Räume.Math. Ann. 129 (1955), 233-259. MR 0071084, 10.1007/BF01362369
Reference: [7] Gunning, R.-C., Narasimhan, R.: Immersion of open Riemann surfaces.Math. Ann. 174 (1967), 103-108. Zbl 0179.11402, MR 0223560, 10.1007/BF01360812
Reference: [8] Gunning, R.-C., Rossi, H.: Analytic functions of several complex variables.Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965). Zbl 0141.08601, MR 0180696
Reference: [9] Gunning, R.-C.: Introduction to Holomorphic Functions of Several Variables, vol. III.Wadsworth & Brokes (1990). MR 1059457
Reference: [10] Kaup, B., Kaup, L.: Holomorphic functions of several variables.An introduction to the fundamental theory. With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics, 3, Berlin (1983). Zbl 0528.32001, MR 0716497
Reference: [11] Khue, N. V.: Stein morphisms and Riemann domains over Stein spaces.Acta Math. Vietnam. 10 (1985), 75-92. MR 0842758
Reference: [12] Laufer, H.: On sheaf cohomology and envelopes of holomorphy.Ann. Math. 84 (1966), 102-118. Zbl 0143.30201, MR 0209520, 10.2307/1970533
Reference: [13] Narasimhan, R.: The Levi problem for complex spaces II.Math. Ann. 146 (1962), 195-216. Zbl 0131.30801, MR 0182747, 10.1007/BF01470950
Reference: [14] Narasimhan, R.: Complex analysis in one variable.Birkhäuser (1985). Zbl 0561.30001, MR 0781130
Reference: [15] Scheja, G.: Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung.Math. Ann. 157 (1964), 75-94. Zbl 0136.20704, MR 0176466, 10.1007/BF01362668
Reference: [16] Serre, J.-P.: Quelques problèmes globaux relatifs aux variétés de Stein.Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles (1953), 57-68 Georges Thone, Lige; Masson & Cie, Paris. Zbl 0053.05302, MR 0064155
Reference: [17] Simha, R. R.: On Siu's characterisation of domains of holomorphy.J. Indian Math. Soc. 42 (1978), 1-4, 127-130. Zbl 0493.32012, MR 0558988
Reference: [18] Siu, Y.-T.: Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy.Math. Z. 102 (1967), 17-29. Zbl 0167.06802, MR 0222342, 10.1007/BF01110282
Reference: [19] Siu, Y.-T.: Analytic sheaf cohomology groups of dimension $n$ of $n$-dimensional complex spaces.Trans. Amer. Math. Soc. 143 (1969), 77-94. Zbl 0186.40404, MR 0252684
Reference: [20] Siu, Y.-T.: Every Stein subvariety admits a Stein neighborhood.Invent. Math. 38 (1976), 89-100. Zbl 0343.32014, MR 0435447, 10.1007/BF01390170
Reference: [21] Siu, Y.-T., Trautmann, G.: Gap sheaves and extension of coherent analytic subsheaves.Lect. Notes in Math., vol. 172, Springer-Verlag, Berlin (1976). MR 0287033
Reference: [22] Vâjâitu, V.: A characterization of $1$-convexity.J. Math. Pures Appl. 84 (2005), 179-197. MR 2118838, 10.1016/j.matpur.2004.09.001
Reference: [23] Wiegmann, K.-W.: Über Quotienten holomorph-konvexer Räume.Math. Z. 97 (1967), 251-258. MR 0214813, 10.1007/BF01112168
.

Files

Files Size Format View
CzechMathJ_60-2010-3_5.pdf 292.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo