Previous |  Up |  Next

Article

Title: On integral sum graphs with a saturated vertex (English)
Author: Chen, Zhibo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 669-674
Summary lang: English
.
Category: math
.
Summary: As introduced by F. Harary in 1994, a graph $ G$ is said to be an $integral$ $ sum$ $ graph$ if its vertices can be given a labeling $f$ with distinct integers so that for any two distinct vertices $u$ and $v$ of $G$, $uv$ is an edge of $G$ if and only if $ f(u)+f(v)=f(w)$ for some vertex $w$ in $G$. \endgraf We prove that every integral sum graph with a saturated vertex, except the complete graph $K_3$, has edge-chromatic number equal to its maximum degree. (A vertex of a graph $G$ is said to be {\it saturated} if it is adjacent to every other vertex of $G$.) Some direct corollaries are also presented. (English)
Keyword: integral sum graph
Keyword: saturated vertex
Keyword: edge-chromatic number
MSC: 05C15
MSC: 05C78
idZBL: Zbl 1224.05439
idMR: MR2672408
.
Date available: 2010-07-20T17:08:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140597
.
Reference: [1] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications.Macmillan, London (1976). MR 0411988
Reference: [2] Chartrand, G., Lesniak, L.: Graphs and Digraphs, 2nd ed.Wadsworth., Belmont (1986). Zbl 0666.05001, MR 0834583
Reference: [3] Chen, Z.: Integral sum graphs from identification.Discrete Math. 181 (1998), 77-90. Zbl 0902.05064, MR 1600747, 10.1016/S0012-365X(97)00046-0
Reference: [4] Chen, Z.: On integral sum graphs.Discrete Math. 306 (2006), 19-25 (It first appeared in The Ninth Quadrennial International Conference on Graph Theory, Combinatorics, Algorithms and Applications, 11 pp. (electronic), Electron. Notes Discrete Math., 11, Elsevier, Amsterdam, 2002.). Zbl 1084.05058, MR 2202070
Reference: [5] Ellingham, M. N.: Sum graphs from trees.Ars Combin. 35 (1993), 335-349. Zbl 0779.05042, MR 1220532
Reference: [6] Gallian, J.: A dynamic survey of graph labeling.Electronic J. Combinatorics 15 (2008). MR 1668059
Reference: [7] Harary, F.: Sum graphs and difference graphs.Congr. Numer. 72 (1990), 101-108. Zbl 0691.05038, MR 1041811
Reference: [8] Harary, F.: Sum graphs over all the integers.Discrete Math. 124 (1994), 99-105. Zbl 0797.05069, MR 1258846, 10.1016/0012-365X(92)00054-U
Reference: [9] He, W., Wang, L., Mi, H., Shen, Y., Yu, X.: Integral sum graphs from a class of trees.Ars Combinatoria 70 (2004), 197-205. Zbl 1092.05059, MR 2023075
Reference: [10] Imrich, W., Klavar, S.: Product Graphs.John Wiley & Sons, New York (2000). MR 1788124
Reference: [11] Liaw, S.-C., Kuo, D., Chang, G.: Integral sum numbers of Graphs.Ars Combin. 54 (2000), 259-268. Zbl 0993.05123, MR 1742421
Reference: [12] Mahmoodian, E. S.: On edge-colorability of Cartesian products of graphs.Canad. Math. Bull. 24 (1981), 107-108. Zbl 0473.05030, MR 0611218, 10.4153/CMB-1981-017-9
Reference: [13] Pyatkin, A. V.: Subdivided trees are integral sum graphs.Discrete Math. 308 (2008), 1749-1750. Zbl 1144.05058, MR 2392615, 10.1016/j.disc.2006.12.006
Reference: [14] Sharary, A.: Integral sum graphs from complete graphs, cycles and wheels.Arab Gulf Sci. Res. 14-1 (1996), 1-14. Zbl 0856.05088, MR 1394997
Reference: [15] Thomassen, C.: Hajós conjecture for line graphs.J. Combin. Theory Ser. B 97 (2007), 156-157. Zbl 1114.05041, MR 2278130, 10.1016/j.jctb.2006.03.006
.

Files

Files Size Format View
CzechMathJ_60-2010-3_6.pdf 216.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo