Previous |  Up |  Next

Article

Title: Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator (English)
Author: Deniz, Erhan
Author: Orhan, Halit
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 699-713
Summary lang: English
.
Category: math
.
Summary: By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out. (English)
Keyword: neighborhoods
Keyword: partial sums
Keyword: integral means
Keyword: generalized Ruscheweyh derivative
MSC: 30C45
idZBL: Zbl 1224.30045
idMR: MR2672411
.
Date available: 2010-07-20T17:12:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140600
.
Reference: [1] Ahuja, O. P.: Fekete-Szegö Problem for a unified class of analytic functions.Panam. Math. J. 7 (1997), 67-78. Zbl 0878.30010, MR 1442222
Reference: [2] Ahuja, O. P.: Integral operators of certain univalent functions.Int. J. Math. Math. Sci. 8 (1985), 653-662. Zbl 0594.30012, MR 0821620, 10.1155/S0161171285000710
Reference: [3] Ahuja, O. P.: Hadamard products of analytic functions defined by Ruscheweyh derivatives.In: Current Topics in Analytic Function Theory H. M. Srivastava, S. Owa World Scientific Publishing Company Singapore (1992), 13-28. Zbl 1002.30007, MR 1232426
Reference: [4] Altintaş, O., Owa, S.: Neighborhoods of certain analytic functions with negative coefficients.Int. J. Math. Math. Sci. 19 (1996), 797-800. MR 1397848, 10.1155/S016117129600110X
Reference: [5] Aouf, M. K.: Neighborhoods of certain classes of analytic functions with negative coefficients.Int. J. Math. Math. Sci. 2006 (2006), 1-6. Zbl 1118.30006, MR 2251704, 10.1155/IJMMS/2006/38258
Reference: [6] Cho, N. C., Owa, S.: Partial sums of meromorphic functions.JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 30 Electronic only. MR 2085674
Reference: [7] Goodman, A. W.: Univalent functions and nonanalytic curves.Proc. Am. Math. Soc. 8 (1957), 598-601. MR 0086879, 10.1090/S0002-9939-1957-0086879-9
Reference: [8] Keerthi, B. S., Gangadharan, A., Srivastava, H. M.: Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients.Math. Comput. Modelling 47 (2008), 271-277. Zbl 1140.30005, MR 2378834, 10.1016/j.mcm.2007.04.004
Reference: [9] Latha, S., Shivarudrappa, L.: Partial sums of meromorphic functions.JIPAM, J. Ineq. Pure Appl. Math. 7 (2006), Art. 140 Electronic only. MR 2268594
Reference: [10] Littlewood, J. E.: On inequalities in the theory of functions.Proc. Lond. Math. Soc. 23 (1925), 481-519. 10.1112/plms/s2-23.1.481
Reference: [11] Murugunsundaramoorthy, G., Srivastava, H. M.: Neighborhoods of certain classes of analytic functions of complex order.JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 24 Electronic only. MR 2085668
Reference: [12] Nasr, M. A., Aouf, M. K.: Starlike function of complex order.J. Nat. Sci. Math. 25 (1985), 1-12. Zbl 0596.30017, MR 0805912
Reference: [13] Orhan, H.: On neighborhoods of analytic functions defined by using Hadamard product.Novi Sad J. Math. 37 (2007), 17-25. Zbl 1164.30010, MR 2402046
Reference: [14] Orhan, H.: Neighborhoods of a certain class of $p$-valent functions with negative coefficients defined by using a differential operator.Math. Ineq. Appl. 12 (2009), 335-349. Zbl 1162.30315, MR 2521398
Reference: [15] Owa, S., Sekine, T.: Integral means of analytic functions.J. Math. Anal. Appl. 304 (2005), 772-782. Zbl 1131.30367, MR 2127606, 10.1016/j.jmaa.2004.09.056
Reference: [16] Raina, R. K., Bansal, D.: Some properties of a new class of analytic functions defined in terms of a Hadamard product.JIPAM, J. Ineq. Pure Appl. Math. 9 (2008), Art. 22 Electronic only. Zbl 1165.30339, MR 2391289
Reference: [17] Robertson, M. S.: On the theory of univalent functions.Ann. Math. 37 (1936), 374-408. Zbl 0014.16505, MR 1503286, 10.2307/1968451
Reference: [18] Ruscheweyh, S.: Neighborhoods of univalent functions.Proc. Am. Math. Soc. 81 (1981), 521-527. Zbl 0458.30008, MR 0601721, 10.1090/S0002-9939-1981-0601721-6
Reference: [19] Ruscheweyh, S.: New criteria for univalent functions.Proc. Am. Math. Soc. 49 (1975), 109-115. Zbl 0303.30006, MR 0367176, 10.1090/S0002-9939-1975-0367176-1
Reference: [20] Silverman, H.: Univalent functions with negative coefficients.Proc. Am. Math. Soc. 51 (1975), 109-116. Zbl 0311.30007, MR 0369678, 10.1090/S0002-9939-1975-0369678-0
Reference: [21] Silverman, H.: Neighborhoods of classes of analytic functions.Far East J. Math. Sci. 3 (1995), 165-169. Zbl 0935.30009, MR 1385117
Reference: [22] Silverman, H.: Partial sums of starlike and convex functions.J. Math. Anal. Appl. 209 (1997), 221-227. Zbl 0894.30010, MR 1444523, 10.1006/jmaa.1997.5361
Reference: [23] Silverman, H.: Subclasses of starlike functions.Rev. Roum. Math. Pures Appl. 23 (1978), 1093-1099. Zbl 0389.30005, MR 0509608
Reference: [24] Silverman, H., Silvia, E. M.: Subclasses of starlike functions subordinate to convex functions.Can. J. Math. 37 (1985), 48-61. Zbl 0574.30015, MR 0777038, 10.4153/CJM-1985-004-7
Reference: [25] Sohi, N. S., Singh, L. P.: A class of bounded starlike functions of complex order.Indian J. Pure Appl. Math. 33 (1991), 29-35. Zbl 0721.30005, MR 1088617
Reference: [26] Srivastava, H. M., Orhan, H.: Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions.Appl. Math. Lett. 20 (2007), 686-691. Zbl 1111.30012, MR 2314414, 10.1016/j.aml.2006.07.009
Reference: [27] Srivastava, H. M., (Eds.), S. Owa: Current Topics in Analytic Function Theory.World Scientific Publishing Company Singapore-New Jersey-London-Hong Kong (1992). Zbl 0976.00007, MR 1232424
Reference: [28] Wiatrowski, P.: The coefficients of a certain family of holomorphic functions.Zeszyty Nauk. Univ. Lodz, Nauki Mat. Przyrod. Ser. II, Zeszyt 39 (1971), 75-85 Polish. MR 0338350
.

Files

Files Size Format View
CzechMathJ_60-2010-3_9.pdf 257.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo