Previous |  Up |  Next

Article

Title: On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient (English)
Author: Chen, Jianqing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 715-736
Summary lang: English
.
Category: math
.
Summary: By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential $$ {\rm i}\varphi _t=-\triangle \varphi +|x|^2\varphi -|x|^b|\varphi |^{p-2}\varphi . $$ We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave. (English)
Keyword: interpolation inequality
Keyword: inhomogeneous nonlinear Schrödinger equation
Keyword: harmonic potential
Keyword: blow-up
Keyword: global existence
Keyword: standing waves
Keyword: strong instability
MSC: 35J20
MSC: 35Q55
idZBL: Zbl 1224.35083
idMR: MR2672412
.
Date available: 2010-07-20T17:14:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140601
.
Reference: [1] Baym, G., Pethick, C. J.: Ground state properties of magnetically trapped Bose-condensed rubidium gas.Phys. Rev. Lett. 76 (1996), 6-9. 10.1103/PhysRevLett.76.6
Reference: [2] Benjamin, T. B.: The stability of solitary waves.Proc. Royal Soc. London, Ser. A. 328 (1972), 153-183. MR 0338584
Reference: [3] Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéarires.C. R. Acad. Sci. Paris I 293 (1981), 489-492. MR 0646873
Reference: [4] Bona, J. L.: On the stability theory of solitary waves.Proc. Royal Soc. London, Ser. A. 344 (1975), 363-374. Zbl 0328.76016, MR 0386438
Reference: [5] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights.Compositio Math. 53 (1984), 259-275. Zbl 0563.46024, MR 0768824
Reference: [6] Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations.Textos de Metodos Matematicos, 22, Rio de Janeiro (1989).
Reference: [7] Cazenave, T., Lions, P. L.: Orbital satbility of standing waves for some nonlinear Schrödinger equations.Comm. Math. Phys. 85 (1982), 549-561. MR 0677997, 10.1007/BF01403504
Reference: [8] Chen, J., Guo, B.: Strong instability of standing waves for a nonlocal Schrödinger equation.Phys. D 227 (2007), 142-148. Zbl 1116.35111, MR 2332502, 10.1016/j.physd.2007.01.004
Reference: [9] Chen, J., Guo, B.: Sharp global existence and blowing up results for inhomogeneous Schrödinger equations.Discrete Contin. Dynam. Systems 8 (2007), 357-367. Zbl 1151.35089, MR 2317813, 10.3934/dcdsb.2007.8.357
Reference: [10] Fibich, G., Wang, X. P.: Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearity.Phys. D. 175 (2003), 96-108. MR 1957907, 10.1016/S0167-2789(02)00626-7
Reference: [11] Fukuizumi, R.: Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential.Discrete Contin. Dyn. Syst. 7 (2001), 525-544. Zbl 0992.35094, MR 1815766, 10.3934/dcds.2001.7.525
Reference: [12] Fukuizumi, R., Ohta, M.: Stability of standing waves for nonlinear Schrödinger equations with potentials.Differential Integral Equations 16 (2003), 111-128. Zbl 1031.35132, MR 1948875
Reference: [13] Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities.J. Math. Kyoto Univ. 45 (2005), 145-158. MR 2138804, 10.1215/kjm/1250282971
Reference: [14] Gill, T. S.: Optical guiding of laser beam in nonuniform plasma.Pramana Journal of Physics 55 (2000), 845-852.
Reference: [15] Ginibre, J., Velo, G.: On the class of nonlinear Schrödinger equations I, II.J. Funct. Anal. 32 (1979), 1-32, 33-71. MR 0533219, 10.1016/0022-1236(79)90076-4
Reference: [16] Glassey, R. T.: On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation.J. Math. Phys. 18 (1977), 1794-1797. MR 0460850, 10.1063/1.523491
Reference: [17] Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I.J. Funct. Anal. 74 (1987), 160-197. Zbl 0656.35122, MR 0901236, 10.1016/0022-1236(87)90044-9
Reference: [18] Liu, C. S., Tripathi, V. K.: Laser guiding in an axially nonuniform plasma channel.Phys. Plasmas 1 (1994), 3100-3103. 10.1063/1.870501
Reference: [19] Liu, Y., Wang, X. P., Wang, K.: Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity.Trans. Amer. Math. Soc. 358 (2006), 2105-2122. MR 2197450, 10.1090/S0002-9947-05-03763-3
Reference: [20] Merle, F.: Nonexistence of minimal blow up solutions of equations $iu_t=-\triangle u-K(x) |u|^{4/N}u$ in $\Bbb R^N$.Ann. Inst. H. Poincaré, Phys. Théor. 64 (1996), 33-85. Zbl 0846.35060, MR 1378233
Reference: [21] Yong-Geun, Oh: Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equation with potentials.J. Differential Equations 81 (1989), 255-274. MR 1016082, 10.1016/0022-0396(89)90123-X
Reference: [22] Rose, H. A., Weinstein, M. I.: On the bound states of the nonlinear Schrödinger equation with linear potential.Phys. D 30 (1988), 207-218. MR 0939275, 10.1016/0167-2789(88)90107-8
Reference: [23] Rother, W.: Some existence results for the equation $-\triangle u+K(x)u^p=0$.Comm. Partial Differential Equations 15 (1990), 1461-1473. MR 1077474, 10.1080/03605309908820733
Reference: [24] Shatah, J., Strauss, W.: Instability of nonlinear bound states.Comm. Math. Phys. 100 (1985), 173-190. Zbl 0603.35007, MR 0804458, 10.1007/BF01212446
Reference: [25] Sintzoff, P., Willem, M.: A semilinear elliptic equation on $\Bbb R^N$ with unbounded coefficients.Variational and topological methods in the study of nonlinear phenomena 49 (Pisa 2000) 105-113 Birkhauser, Boston, 2002. MR 1879738
Reference: [26] Strauss, W.: Existence of solitary waves in higher dimensions.Comm. Math. Phys. 55 (1977), 149-162. Zbl 0356.35028, MR 0454365, 10.1007/BF01626517
Reference: [27] Tsurumi, T., Waditi, M.: Collapses of wave functions in multidimensional nonlinear Schrödinger equations under harmonic potential.J. Phys. Soc. Japan 66 (1997), 3031-3034. 10.1143/JPSJ.66.3031
Reference: [28] Tsurumi, T., Waditi, M.: Instability of the Bose-Einstein condensate under magnetic trap.J. Phys. Soc. Japan 66 (1997), 3035-3039.
Reference: [29] Wang, Y.: Strong instability of standing waves for Hartree equation with harmonic potential.Phys. D 237 (2008), 998-1005. Zbl 1143.35372, MR 2417084, 10.1016/j.physd.2007.11.018
Reference: [30] Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates.Comm. Math. Phys. 87 (1983), 567-576. Zbl 0527.35023, MR 0691044, 10.1007/BF01208265
Reference: [31] Willem, M.: Minimax Theorems.Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser, Boston (1996). Zbl 0856.49001, MR 1400007
Reference: [32] Zhang, J.: Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential.Comm. Partial Differential Equations 30 (2005), 1429-1443. MR 2182299, 10.1080/03605300500299539
.

Files

Files Size Format View
CzechMathJ_60-2010-3_10.pdf 328.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo