Previous |  Up |  Next

Article

Title: A sharp form of an embedding into multiple exponential spaces (English)
Author: Černý, Robert
Author: Mašková, Silvie
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 751-782
Summary lang: English
.
Category: math
.
Summary: Let $\Omega $ be a bounded open set in $\mathbb R^n$, $n \geq 2$. In a well-known paper {\it Indiana Univ. Math. J.}, 20, 1077--1092 (1971) Moser found the smallest value of $K$ such that $$ \sup \bigg \{\int _{\Omega } \exp \Big (\Big (\frac {\left |f(x)\right |}K\Big )^{n/(n-1)}\Big )\colon f\in W^{1,n}_0(\Omega ),\|\nabla f\|_{L^n}\leq 1\bigg \}<\infty . $$ We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^{n-1}L \log ^{\alpha }\log L$ $(\alpha <n-1)$, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^{n/(n-1-\alpha )}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases. (English)
Keyword: Orlicz spaces
Keyword: Orlicz-Sobolev spaces
Keyword: embedding theorems
Keyword: sharp constants
MSC: 46E30
MSC: 46E35
idZBL: Zbl 1224.46064
idMR: MR2672414
.
Date available: 2010-07-20T17:17:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140603
.
Reference: [1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Springer (1996). MR 1411441
Reference: [2] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces.Indiana Univ. Math. J. 45 39-65 (1996). Zbl 0860.46022, MR 1406683, 10.1512/iumj.1996.45.1958
Reference: [3] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces.Indiana Univ. Math. J. 44 19-43 (1995). Zbl 0826.47021, MR 1336431, 10.1512/iumj.1995.44.1977
Reference: [4] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems.Studia Math. 115 151-181 (1995). Zbl 0829.47024, MR 1347439
Reference: [5] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces.Proc. Roy. Soc. Edinburgh 126A 995-1009 (1996). Zbl 0860.46024, MR 1415818
Reference: [6] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces.J. Functional Analysis 146 116-150 (1997). Zbl 0934.46036, MR 1446377, 10.1006/jfan.1996.3037
Reference: [7] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings in logarithmic Bessel-potential spaces.Proc. Amer. Math. Soc. 126 2417-2425 (1998). MR 1451796, 10.1090/S0002-9939-98-04327-5
Reference: [8] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings.Houston J. Math. 21 119-128 (1995). Zbl 0835.46027, MR 1331250
Reference: [9] Fusco, N., Lions, P. L., Sbordone, C.: Sobolev imbedding theorems in borderline cases.Proc. Amer. Math. Soc. 124 561-565 (1996). Zbl 0841.46023, MR 1301025, 10.1090/S0002-9939-96-03136-X
Reference: [10] Hedberg, L. I.: On certain convolution inequalities.Proc. Amer. Math. Soc. 36 505-512 (1972). MR 0312232, 10.1090/S0002-9939-1972-0312232-4
Reference: [11] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces.J. Funct. Anal. 204 196-227 (2003). Zbl 1034.46031, MR 2004749, 10.1016/S0022-1236(02)00172-6
Reference: [12] Moser, J.: A sharp form of an inequality by N. Trudinger.Indiana Univ. Math. J. 20 1077-1092 (1971). MR 0301504, 10.1512/iumj.1971.20.20101
Reference: [13] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces.Math. Ineq. Appl. 2 391-467 (July 1999). Zbl 0956.46020, MR 1698383
Reference: [14] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure Appl. Math. (1991). Zbl 0724.46032, MR 1113700
Reference: [15] Strichartz, R. S.: A note on Trudinger's extension of Sobolev's inequality.Indiana Univ. Math. J. 21 841-842 (1972). MR 0293389, 10.1512/iumj.1972.21.21066
Reference: [16] Talenti, G.: Inequalities in rearrangement invariant function spaces.Nonlinear Analysis, Function Spaces and Applications 5 177-230 (1994), Prometheus Publ. House Prague. Zbl 0872.46020, MR 1322313
Reference: [17] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 473-484 (1967). Zbl 0163.36402, MR 0216286
Reference: [18] Yudovich, V. I.: Some estimates connected with integral operators and with solutions of elliptic equations.Soviet Math. Doklady 2 746-749 (1961). Zbl 0144.14501
.

Files

Files Size Format View
CzechMathJ_60-2010-3_12.pdf 383.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo