Previous |  Up |  Next

Article

Title: On Denjoy type extensions of the Pettis integral (English)
Author: Naralenkov, Kirill
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 737-750
Summary lang: English
.
Category: math
.
Summary: In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined. (English)
Keyword: scalar derivative
Keyword: approximate scalar derivative
Keyword: absolute continuity
Keyword: bounded variation
Keyword: $VBG$ function
Keyword: $ACG$ function
Keyword: Pettis integral
Keyword: Denjoy-Pettis integral
MSC: 26A39
MSC: 26B30
MSC: 46G10
idZBL: Zbl 1224.26028
idMR: MR2672413
.
Date available: 2010-07-20T17:15:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140602
.
Reference: [1] Birkhoff, G.: Integration of functions with values in a Banach space.Trans. Am. Math. Soc. 38 (1935), 357-378. Zbl 0013.00803, MR 1501815
Reference: [2] Piazza, L. Di, Musiał, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions.Stud. Math. 176 (2006), 159-176. MR 2264361, 10.4064/sm176-2-4
Reference: [3] Diestel, J.: Sequences and Series in a Banach Space. Gaduate Texts in Mathematics, Vol. 92.Springer-Verlag New York-Heidelberg-Berlin (1984). MR 0737004, 10.1007/978-1-4612-5200-9
Reference: [4] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions.Ill. J. Math. 38 (1994), 127-147. Zbl 0790.28004, MR 1245838, 10.1215/ijm/1255986891
Reference: [5] Gámez, J. L., Mendoza, J.: On Denjoy-Dunford and Denjoy-Pettis integrals.Stud. Math. 130 (1998), 115-133. MR 1623348
Reference: [6] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals.Stud. Math. 92 (1989), 73-91. Zbl 0681.28006, MR 0984851, 10.4064/sm-92-1-73-91
Reference: [7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, Vol. 4.American Mathematical Society (AMS) Providence (1994). MR 1288751, 10.1090/gsm/004/09
Reference: [8] Hildebrandt, T. H.: Integration in abstract spaces.Bull. Am. Math. Soc. 59 (1953), 111-139. Zbl 0051.04201, MR 0053191, 10.1090/S0002-9904-1953-09694-X
Reference: [9] Lee, Peng Yee, Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series, Vol. 14.Cambridge University Press Cambridge (2000). MR 1756319
Reference: [10] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92.Springer Berlin-Heidelberg-New York (1977). MR 0500056
Reference: [11] Naralenkov, K. M.: On integration by parts for Stieltjes-type integrals of Banach space-valued functions.Real Anal. Exch. 30 (2004/2005), 235-260. MR 2127529, 10.14321/realanalexch.30.1.0235
Reference: [12] Pettis, B. J.: On integration in vector spaces.Trans. Am. Math. Soc. 44 (1938), 277-304. Zbl 0019.41603, MR 1501970, 10.1090/S0002-9947-1938-1501970-8
Reference: [13] Saks, S.: Theory of the Integral.Dover Publications Inc. New York (1964). MR 0167578
Reference: [14] Talagrand, M.: Pettis Integral and Measure Theory. Mem. Am. Math. Soc. No. 307.(1984). MR 0756174
Reference: [15] Wang, Chonghu, Yang, Zhenhua: Some topological properties of Banach spaces and Riemann integration.Rocky Mt. J. Math. 30 (2000), 393-400. Zbl 0986.46028, MR 1763820, 10.1216/rmjm/1022008999
.

Files

Files Size Format View
CzechMathJ_60-2010-3_11.pdf 298.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo