Previous |  Up |  Next

Article

Title: The Laplacian spectral radius of graphs (English)
Author: Li, Jianxi
Author: Shiu, Wai Chee
Author: Chang, An
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 835-847
Summary lang: English
.
Category: math
.
Summary: The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs. (English)
Keyword: graph
Keyword: Laplacian spectral radius
Keyword: bounds
MSC: 05C50
idZBL: Zbl 1224.05304
idMR: MR2672418
.
Date available: 2010-07-20T17:22:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140607
.
Reference: [1] Bondy, J., Murty, U.: Graph Theory with Applications.MacMillan New York (1976). MR 0411988
Reference: [2] Cioabǎ, S.: The spectral radius and the maximum degree of irregular graphs.Electron. J. Combin. 14, $\rm{ Research paper }$ R38 (2007). MR 2320594, 10.37236/956
Reference: [3] Haemers, W.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 226-228 (1995), 593-616. Zbl 0831.05044, MR 1344588
Reference: [4] Merris, R.: Laplacian matrix of graphs: a survey.Linear Algebra Appl. 197-198 (1994), 143-176. MR 1275613
Reference: [5] Liu, B., Shen, J., Wang, X.: On the largest eigenvalue of non-regular graphs.J. Combin. Theory Ser. B. 97 (2007), 1010-1018. Zbl 1125.05062, MR 2354715, 10.1016/j.jctb.2007.02.008
Reference: [6] Mohar, B.: Some applications of Laplace eigenvalues of graphs. Notes taken by Martin Juvan.Graph Symmetry: Algebraic Methods and Applications. NATO ASI Ser., Ser. C, Math. Phys. Sci. Vol. 497 G. Hahn et al. Kluwer Academic Publishers Dordrecht (1997), 225-275. Zbl 0883.05096, MR 1468791
Reference: [7] Motzkin, T., Straus, E.: Maxima for graphs and a new proof of a theorem of Turán.Canad. J. Math. 17 (1965), 533-540. Zbl 0129.39902, MR 0175813, 10.4153/CJM-1965-053-6
Reference: [8] Nikiforov, V.: Bounds on graph eigenvalues II.Linear Algebra Appl. 427 (2007), 183-189. Zbl 1128.05035, MR 2351351
Reference: [9] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs.Linear Algebra. Appl. 422 (2007), 755-770. Zbl 1113.05065, MR 2305155, 10.1016/j.laa.2006.12.003
Reference: [10] Stevanovi'c, D.: The largest eigenvalue of nonregular graphs.J. Combin. Theory Ser. B. 91 (2004), 143-146. MR 2047537, 10.1016/j.jctb.2003.12.002
Reference: [11] Zhang, X.-D., Luo, R.: The spectral radius of triangle-free graphs.Australas. J. Comb. 26 (2002), 33-39. Zbl 1008.05089, MR 1918140
Reference: [12] Zhang, X.-D.: Eigenvector and eigenvalues of non-regular graphs.Linear Algebra Appl. 409 (2005), 79-86. MR 2170268, 10.1016/j.laa.2005.03.020
.

Files

Files Size Format View
CzechMathJ_60-2010-3_16.pdf 292.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo