Title:
|
The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices (English) |
Author:
|
Liu, Muhuo |
Author:
|
Tan, Xuezhong |
Author:
|
Liu, BoLian |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
3 |
Year:
|
2010 |
Pages:
|
849-867 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively. (English) |
Keyword:
|
Laplacian matrix |
Keyword:
|
signless Laplacian matrix |
Keyword:
|
spectral radius |
MSC:
|
05C50 |
MSC:
|
05C75 |
idZBL:
|
Zbl 1224.05311 |
idMR:
|
MR2672419 |
. |
Date available:
|
2010-07-20T17:23:09Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140608 |
. |
Reference:
|
[1] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs.Publ. Inst. Math. Beograd 39(53) (1986), 45-54. Zbl 0603.05028, MR 0869175 |
Reference:
|
[2] Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K.: A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph.Linear Algebra Appl. 429 (2008), 2770-2780. MR 2455532 |
Reference:
|
[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications.VEB Deutscher Verlag der Wissenschaften Berlin (1980). |
Reference:
|
[4] Cvetković, D. M., Rowlinson, P., Simić, S.: Eigenspaces of Graphs.Cambridge University Press Cambridge (1997), 56-60. MR 1440854 |
Reference:
|
[5] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. MR 2312332, 10.1016/j.laa.2007.01.009 |
Reference:
|
[6] Geng, X. Y., Li, S. C.: The spectral radius of tricyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 428 (2008), 2639-2653. MR 2416577 |
Reference:
|
[7] Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.: Algebraic graph theory without orientation.Linear Algebra Appl. 212-213 (1994), 289-307. Zbl 0817.05047, MR 1306983 |
Reference:
|
[8] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges.Linear Algebra Appl. 413 (2006), 59-71. Zbl 1082.05059, MR 2202092 |
Reference:
|
[9] Guo, S. G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 408 (2005), 78-85. Zbl 1073.05550, MR 2166856 |
Reference:
|
[10] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs.Linear Algebra Appl. 226-228 (1995), 723-730. MR 1344594 |
Reference:
|
[11] Li, J. S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph.Linear Algebra Appl. 285 (1998), 305-307. Zbl 0931.05052, MR 1653547 |
Reference:
|
[12] Li, Q., Feng, K.: On the largest eigenvalue of a graph.Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. MR 0549045 |
Reference:
|
[13] Liu, B. L.: Combinatorial Matrix Theory.Science Press Beijing (2005), Chinese. |
Reference:
|
[14] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613 |
Reference:
|
[15] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues.Linear Algebra Appl. 355 (2002), 287-295. Zbl 1015.05055, MR 1930150 |
Reference:
|
[16] Rojo, O., Soto, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenvalues.Linear Algebra Appl. 312 (2000), 155-159. Zbl 0958.05088, MR 1759329 |
Reference:
|
[17] Wu, B., Xiao, E., Hong, Y.: The spectral radius of trees on $k$ pendant vertices.Linear Algebra Appl. 395 (2005), 343-349. Zbl 1057.05057, MR 2112895 |
Reference:
|
[18] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences.Discrete Math. 308 (2008), 3143-3150. Zbl 1156.05038, MR 2423396, 10.1016/j.disc.2007.06.017 |
. |