Previous |  Up |  Next

Article

Title: Misclassified size-biased modified power series distribution and its applications (English)
Author: Hassan, Anwar
Author: Ahmad, Peer Bilal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 1
Year: 2009
Pages: 1-17
Summary lang: English
.
Category: math
.
Summary: A misclassified size-biased modified power series distribution (MSBMPSD) where some of the observations corresponding to $x = 2$ are misclassified as $x = 1$ with probability $\alpha $, is defined. We obtain its recurrence relations among ordinary, central and factorial moments and also for some of its particular cases like the size-biased generalized negative binomial (SBGNB) and the size-biased generalized Poisson (SBGP) distributions. We also discuss the effect of the misclassification on the variance for MSBMPSD and illustrate an example for size-biased generalized negative binomial distribution. Finally, an example is presented for the size-biased generalized Poisson distribution to illustrate the results, and a goodness of fit test is also done using the method of moments. (English)
Keyword: misclassification
Keyword: size-biased modified power series distribution
Keyword: raw moments
Keyword: central moments
Keyword: factorial moments
Keyword: variance ratio
Keyword: inverted parabola
Keyword: generalized Poisson
Keyword: generalized negative binomial
MSC: 60E05
MSC: 62E10
MSC: 62E15
idZBL: Zbl 1206.62010
idMR: MR2504683
DOI: 10.21136/MB.2009.140633
.
Date available: 2010-07-20T17:44:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140633
.
Reference: [1] Blumenthal, S.: Proportional sampling in life length studies.Technometrics 9 (1967), 205-218. MR 0215466, 10.1080/00401706.1967.10490456
Reference: [2] Borel, E.: Sur l'emploi du theoreme de Bernoulli pour faciliter le calcul d'un infinite de coefficients.Application au probleme de l'attente a un guichet, Comptes Rendus, Academie des Sciences, Paris, Series A 214 (1942), 452-456. MR 0008126
Reference: [3] Bortkiewicz, L. von: Das Gesetz der kleinen Zahlen.Teubner, Leipzig (1898) \JFM 29.0188.03.
Reference: [4] Cohen, A. C.: Estimating the parameters of a modified Poisson distribution.Amer. Statist. Assoc. 55 (1960), 139-143. Zbl 0104.37701, MR 0111065, 10.1080/01621459.1960.10482054
Reference: [5] Cohen, A. C.: Estimation in the Poisson distribution when sample value of $c+1$ is sometimes erroneously reported as $c$.Ann. Inst. Stat. Math. 9 (1960), 189-193. 10.1007/BF01682328
Reference: [6] Cohen, A. C.: Misclassified data from binomial distribution.Technometrics 2 (1960), 109-113. MR 0109390, 10.1080/00401706.1960.10489884
Reference: [7] Consul, P. C., Jain, G. C.: A generalization of the Poisson distribution.Technometrics 15 (1973), 791-799. Zbl 0271.60020, MR 0391332, 10.1080/00401706.1973.10489112
Reference: [8] Gupta, R. C.: Modified power series distribution and some of its applications.Sankhya, Series B 36 (1974), 288-298. Zbl 0318.62009, MR 0391334
Reference: [9] Gupta, R. C.: Some characterizations of discrete distributions.Commun. Stat. A5 1 (1975), 45-48. Zbl 0307.62009
Reference: [10] Gupta, R. C.: Some characterizations of distributions by properties of their forward and backward recurrence times in a renewal process.Scand. J. Stat., Theory Appl. 3 (1976), 215-216. Zbl 0348.60119, MR 0426238
Reference: [11] Gupta, R. C.: Waiting time paradox and size biased sampling.Commun. Stat., Theory Methods A8 13 (1979), 601-607. Zbl 0444.62017, MR 0528680, 10.1080/03610927908827786
Reference: [12] Gupta, R. C.: Some characterizations of renewal densities with emphasis in reliability.Math. Operationsforsch. Stat. 15 (1984), 571-579. Zbl 0563.62077, MR 0767744
Reference: [13] Gupta, R. C., Tripathi, R. C.: A comparison between the ordinary and the length-biased modified power series distributions with applications.Commun. Stat., Theory Methods 16 (1987), 1195-1206. Zbl 0653.62014, MR 0892612, 10.1080/03610928708829431
Reference: [14] Gupta, R. C., Tripathi, R. C.: Statistical inference based on the length-biased data for the modified power series distributions.Commun. Stat., Theory Methods 21 (1992), 519-537. Zbl 0800.62104, MR 1158575, 10.1080/03610929208830793
Reference: [15] Jain, G. C., Consul, P. C.: A generalized negative binomial distribution.SIAM J. Appl. Math. 21 (1971), 501-513. Zbl 0234.60010, MR 0307405, 10.1137/0121056
Reference: [16] Jani, P. N., Shah, S. M.: Misclassification in modified power series distribution in which the value one is sometimes reported as zero and some of its applications.Metron 37 (1979), 121-136. Zbl 0454.62051, MR 0644925
Reference: [17] Noack, A.: A class of random variables with discrete distributions.Ann. Math. Stat. 21 (1950), 127-132. Zbl 0036.08601, MR 0033472, 10.1214/aoms/1177729894
Reference: [18] Patel, A. I., Patel, I. D.: Recurrence relations for moments of the so called misclassified distribution.Assam Statistical Review 10 (1996), 107-119.
Reference: [19] Patel, A. I., Patel, I. D.: Misclassification in modified power series distribution and its applications.Assam Statistical Review 15 (2001), 55-69.
Reference: [20] Patil, G. P.: Certain properties of the generalized power series distributions.Ann. Inst. Stat. Math. Tokyo. 14 (1962), 179-182. MR 0156395, 10.1007/BF02868639
Reference: [21] Scheaffer, R. L.: Size biased sampling.Technometrics 14 (1972), 635-644. Zbl 0238.62011, 10.1080/00401706.1972.10488952
Reference: [22] Singh, S. N., Yadav, R. C.: Trends in rural out-migration at household level.Rural Demography. 8 (1971), 53-61.
Reference: [23] Shoukri, M. M., Consul, P. C.: Bayesian analysis of generalized Poisson distribution.Commun. Stat., Theory Methods 18 (1989), 1465-1480. MR 1046544
Reference: [24] Williford, W. O., Bingham, S. F.: Bayesian estimation of the parameters in two modified Poisson distributions.Commun. Stat., Theory Methods A8 13 (1979), 1315-1326. Zbl 0428.62023, MR 0538517, 10.1080/03610927908827832
.

Files

Files Size Format View
MathBohem_134-2009-1_1.pdf 277.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo