Title:
|
Compatible mappings of type $(\beta)$ and weak compatibility in fuzzy metric spaces (English) |
Author:
|
Jain, Shobha |
Author:
|
Jain, Shishir |
Author:
|
Jain, Lal Bahadur |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
134 |
Issue:
|
2 |
Year:
|
2009 |
Pages:
|
151-164 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The object of this paper is to establish a unique common fixed point theorem for six self-mappings satisfying a generalized contractive condition through compatibility of type $ ( \beta ) $ and weak compatibility in a fuzzy metric space. It significantly generalizes the result of Singh and Jain [The Journal of Fuzzy Mathematics $(2006)] $ and Sharma [Fuzzy Sets and Systems $(2002) ] $. An example has been constructed in support of our main result. All the results presented in this paper are new. (English) |
Keyword:
|
fuzzy metric space |
Keyword:
|
common fixed points |
Keyword:
|
$t$-norm |
Keyword:
|
compatible maps of type $ (\beta ) $ |
Keyword:
|
compatible maps of type $ (\alpha ) $ |
Keyword:
|
weak compatible maps |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 1212.54117 |
idMR:
|
MR2535143 |
DOI:
|
10.21136/MB.2009.140650 |
. |
Date available:
|
2010-07-20T17:55:11Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140650 |
. |
Reference:
|
[1] Cho, Y. J.: Fixed point in fuzzy metric space.J. Fuzzy Math. 5 (1997), 949-962. |
Reference:
|
[2] Cho, Y. J., Pathak, H. K., Kang, S. M., Jung, J. S.: Common fixed points of compatible maps of type $(\beta)$ on fuzzy metric spaces.Fuzzy Sets Syst. 93 (1998), 99-111. Zbl 0915.54004, MR 1600404 |
Reference:
|
[3] Geroge, A., Veeramani, P.: On some results in fuzzy metric spaces.Fuzzy Sets Syst. 64 (1994), 395-399. MR 1289545 |
Reference:
|
[4] Grabiec, M.: Fixed points in fuzzy metric spaces.Fuzzy Sets Syst. 27 (1988), 385-389. Zbl 0664.54032, MR 0956385 |
Reference:
|
[5] Jungck, G.: Compatible mappings and common fixed point.Int. J. Math. Math. Sci. 9 (1986), 771-779. MR 0870534, 10.1155/S0161171286000935 |
Reference:
|
[6] Jungck, G., Rhoades, B. E.: Fixed point for set valued functions with out continuity.Indian J. Pure Appl. Math. 29 (1998), 227-238. MR 1617919 |
Reference:
|
[7] Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces.Kybernetica 11 (1975), 326-334. MR 0410633 |
Reference:
|
[8] Mishra, S. N., Singh, S. L.: Common fixed points of maps in fuzzy metric spaces.Int. J. Math. Math. Sci. 17 (1994), 253-258. MR 1261071, 10.1155/S0161171294000372 |
Reference:
|
[9] Sessa, S.: On a weak commutative condition in fixed point consideration.Publ. Inst. Math. (Beograd) 32 (1982), 146-153. MR 0710984 |
Reference:
|
[10] Sharma, S.: Common fixed point theorem in fuzzy metric space.Fuzzy Sets Syst. 127 (2002), 345-352. MR 1899067, 10.1016/S0165-0114(01)00112-9 |
Reference:
|
[11] Singh, B., Chouhan, M. S.: Common fixed point theorems in fuzzy metric space.Fuzzy Sets Syst. 115 (2000), 471-475. |
Reference:
|
[12] Singh, B., Jain, S.: Fixed point theorem for six self maps in fuzzy metric space.J. Fuzzy Math. 14 (2006), 231-243. MR 2211701 |
Reference:
|
[13] Vasuki, R.: Common fixed points for $R$-weakly commuting maps in fuzzy metric space.Indian J. Pure Appl. Math. (1999), 419-423. MR 1695690 |
Reference:
|
[14] Zadeh, L. A.: Fuzzy Sets.Inf. Control. 89 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X |
. |