Previous |  Up |  Next

Article

Title: Optimal sublinear inequalities involving geometric and power means (English)
Author: Wen, Jiajin
Author: Cheng, Sui Sun
Author: Gao, Chaobang
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 2
Year: 2009
Pages: 133-149
Summary lang: English
.
Category: math
.
Summary: There are many relations involving the geometric means $G_n(x)$ and power means $[A_n(x^{\gamma })]^{1/\gamma }$ for positive $n$-vectors $x$. Some of them assume the form of inequalities involving parameters. There then is the question of sharpness, which is quite difficult in general. In this paper we are concerned with inequalities of the form $(1-\lambda )G_n^{\gamma }(x)+\lambda A_n^{\gamma }(x)\geq A_n(x^{\gamma })$ and $(1-\lambda )G_n^{\gamma }(x)+\lambda A_n^{\gamma }(x)\leq A_n(x^{\gamma })$ with parameters $\lambda \in \Bbb R$ and $\gamma \in (0,1).$ We obtain a necessary and sufficient condition for the former inequality, and a sharp condition for the latter. Several applications of our results are also demonstrated. (English)
Keyword: geometric mean
Keyword: power mean
Keyword: Hermitian matrix
Keyword: permanent of a complex
Keyword: simplex
Keyword: arithmetic-geometric inequality
MSC: 26D15
MSC: 26E60
idZBL: Zbl 1212.26079
idMR: MR2535142
DOI: 10.21136/MB.2009.140649
.
Date available: 2010-07-20T17:54:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140649
.
Reference: [1] Bullen, P. S., Mitrinovic, D. S., Vasic, P. M.: Means and Their Inequalities.Reidel, Dordrecht (1988). Zbl 0687.26005, MR 0947142
Reference: [2] Wang, W. L., Wen, J. J., Shi, H. N.: Optimal inequalities involving power means.Acta Math. Sin. 47 (2004), 1053-1062 Chinese. MR 2128070
Reference: [3] Pečarić, J. E., Wen, J. J., Wang, W. L., Tao, L.: A generalization of Maclaurin's inequalities and its applications.Math. Inequal. Appl. 8 (2005), 583-598. MR 2174887
Reference: [4] Wang, W. L., Lin, Z. C.: A conjecture of the strengthened Jensen's inequality.Journal of Chengdu University (Natural Science Edition) 10 (1991), 9-13 Chinese.
Reference: [5] Chen, J., Wang, Z.: Proof of an analytic inequality.J. Ninbo Univ. 5 (1992), 12-14 Chinese.
Reference: [6] Chen, J., Wang, Z.: The converse of an analytic inequality.J. Ninbo Univ. 2 (1994), 13-15 Chinese.
Reference: [7] Wen, J. J., Zhang, Z. H.: Vandermonde-type determinants and inequalities.Applied Mathematics E-Notes 6 (2006), 211-218. Zbl 1157.15316, MR 2231746
Reference: [8] Wen, J. J., Wang, W. L.: Chebyshev type inequalities involving permanents and their application.Linear Alg. Appl. (2007), 422 295-303. MR 2299014
Reference: [9] Wen, J. J., Shi, H. N.: Optimizing sharpening for Maclaurin inequality.Journal of Chengdu University (Natural Science Edition) 19 (2000), 1-8 Chinese.
Reference: [10] Wen, J. J., Wang, W. L.: The inequalities involving generalized interpolation polynomial.Computer and Mathematics with Applications 56 (2008), 1045-1058 [Online: http://dx.doi.org/10.1016/j.camwa.2008.01.032]. MR 2435283, 10.1016/j.camwa.2008.01.032
Reference: [11] Wen, J. J., Gao, C. B.: Geometric inequalities involving the central distance of the centered 2-surround system.Acta. Math. Sin. 51 (2008), 815-832 Chinese. Zbl 1174.26015, MR 2454021
.

Files

Files Size Format View
MathBohem_134-2009-2_3.pdf 278.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo