Previous |  Up |  Next

Article

Title: Contra $G_\delta$-continuity in smooth fuzzy topological spaces (English)
Author: Devi, D. Anitha
Author: Roja, E.
Author: Uma, M. K.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 3
Year: 2009
Pages: 285-300
Summary lang: English
.
Category: math
.
Summary: In this paper the concept of fuzzy contra $\G _{\delta }$-continuity in the sense of A. P. Sostak (1985) is introduced. Some interesting properties and characterizations are investigated. Also, some applications to fuzzy compact spaces are established. (English)
Keyword: fuzzy contra $\G _{\delta }$-continuity
Keyword: fuzzy strong $\G _{\delta }$-continuity
Keyword: fuzzy perfect $\G _{\delta }$-continuity
Keyword: fuzzy $\G _{\delta }$-compact space
Keyword: fuzzy $S$-closed space
MSC: 03E72
MSC: 54A40
idZBL: Zbl 1212.54023
idMR: MR2561307
DOI: 10.21136/MB.2009.140662
.
Date available: 2010-07-20T18:04:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140662
.
Reference: [1] Balasubramanian, G.: Maximal fuzzy topologies.Kybernetika 31 (1995), 459-464. Zbl 0856.54004, MR 1361307
Reference: [2] Dontchev, J.: Contra-continuous functions and strongly $s$-closed spaces.Inter. J. Math. Sci. 19 (1996), 303-310. Zbl 0840.54015, MR 1375993, 10.1155/S0161171296000427
Reference: [3] Ekici, E., Kerre, E.: On fuzzy contra continuities.Advances in Fuzzy Mathematics 1 (2006), 35-44.
Reference: [4] Krsteska, B., Ekici, E.: Fuzzy contra strong precontinuity.Indian J. Math. 50 (2008), 149-161. Zbl 1149.54305, MR 2379141
Reference: [5] Pu P. M., Liu Y. M.: Fuzzy topology. I: Neighbourhood structure of a fuzzy point and Moor-Smith convergence.J. Math. Anal. Appl. 76 (1980), 571-599. MR 0587361
Reference: [6] Ramadan, A. A., Abbas, S. E., Yong Chan Kim: Fuzzy irresolute mappings in smooth fuzzy topological spaces.The Journal of Fuzzy Mathematics 9 (2001), 865-877. MR 1879350
Reference: [7] Roja, E., Uma, M. K., Balasubramanian, G.: Some generalization of fuzzy $G_{\delta}$-continuous mappings.Mathematical Forum 17 (2004-2005), 1-16. MR 2454049
Reference: [8] Roja, E., Uma, M. K., Balasubramanian G.: $G_{\delta}$-connectedness in fuzzy topological spaces.East Asian Math. J. 20 (2004), 87-95. Zbl 1066.54006
Reference: [9] Samanta, S. K., Chattopadhyay, K. C.: Fuzzy topology.Fuzzy Sets Systems 54 (1993), 207-212. Zbl 0809.54005, MR 1215120
Reference: [10] Smets, P.: The degree of belief in a fuzzy event.Inform. Sci. 25 (1981), 1-19. Zbl 0472.62005, MR 0651984
Reference: [11] Sostak, A. P.: On a fuzzy topological structure.Rend. Circ. Matem. Palermo (Ser. II) 11 (1985), 89-103. Zbl 0638.54007, MR 0897975
Reference: [12] Sugeno, M.: An introductory survey of fuzzy control.Inform. Sci. 36 (1985), 59-83. Zbl 0586.93053, MR 0813765
Reference: [13] Thangaraj, G.: Contributions to the study on some aspects of fuzzy topological structures.Ph.D. Thesis, University of Madras (2003).
Reference: [14] Zadeh, L. A.: Fuzzy sets.Inf. Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
MathBohem_134-2009-3_4.pdf 269.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo