Previous |  Up |  Next

Article

Title: Holomorphically projective mappings of compact semisymmetric manifolds (English)
Author: Al Lamy, Raad J. K.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 49
Issue: 1
Year: 2010
Pages: 49-53
Summary lang: English
.
Category: math
.
Summary: In this paper we consider holomorphically projective mappings from the compact semisymmetric spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that in this case space $A_n$ is holomorphically projective flat and $\bar{K}_n$ is space with constant holomorphic curvature. These results are the generalization of results by T. Sakaguchi, J. Mikeš, V. V. Domashev, N. S. Sinyukov, E. N. Sinyukova, M. Škodová, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces. (English)
Keyword: Holomorphically projective mapping
Keyword: equiaffine space
Keyword: affine-connected space
Keyword: semisymmetric space
Keyword: Riemannian space
Keyword: Kählerian space
MSC: 53B20
MSC: 53B30
MSC: 53B35
idZBL: Zbl 1228.53018
idMR: MR2797522
.
Date available: 2010-09-13T06:55:13Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/140736
.
Reference: [1] Beklemishev, D. V.: Differential geometry of spaces with almost complex structure.Geometria. Itogi Nauki i Tekhn., All-Union Inst. for Sci. and Techn. Information (VINITI), Akad. Nauk SSSR, Moscow, (1965), 165–212. MR 0192434
Reference: [2] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two.World Sci., 1996. Zbl 0904.53006, MR 1462887
Reference: [3] Domashev, V. V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces.Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23, 2 (1978), 297–304. MR 0492674, 10.1007/BF01153160
Reference: [4] Kurbatova, I. N.: HP-mappings of H-spaces.Ukr. Geom. Sb., Kharkov 27 (1984), 75–82. Zbl 0571.58006, MR 0767421
Reference: [5] Lakomá, L., Jukl, M.: The decomposition of tensor spaces with almost complex structure.Suppl. Rend. Circ. Mat. (Palermo) 72, II (2004), 145–150. Zbl 1064.53015, MR 2069402
Reference: [6] Al Lamy, R. J. K., Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces.Arch. Math. (Brno) 42, 5 (2006), 291–299. MR 2322415
Reference: [7] Mikeš, J.: Geodesic mappings onto semisymmetric spaces.Russ. Math. 38, 2 (1994), 35–41, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. 381, 2 (1994), 37–43. MR 1302090
Reference: [8] Mikeš, J.: On special F-planar mappings of affine-connected spaces.Vestn. Mosk. Univ. 3 (1994), 18–24. MR 1315721
Reference: [9] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci., New York 78, 3 (1996), 311–333. MR 1384327, 10.1007/BF02365193
Reference: [10] Mikeš, J.: Holomorphically projective mappings and their generalizations.J. Math. Sci., New York 89, 3 (1998), 1334–1353. MR 1619720
Reference: [11] Mikeš, J., Chodorová, M.: On concircular and torse-forming vector fields on compact manifolds.Acta Acad. Paedagog. Nyregyházi., Mat.-Inform. Közl. (2010). Zbl 1240.53028, MR 2754424
Reference: [12] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces.Suppl. Rend. Circ. Mat. (Palermo) 69, II (2002), 181–186. Zbl 1023.53015, MR 1972433
Reference: [13] Mikeš, J., Radulović, Ž, Haddad, M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces.Russ. Math. 40, 10 (1996), 28–32, transl. from Izv. Vyssh. Uchebn., Mat 1996, 10(413), 30–35. MR 1447076
Reference: [14] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of spaces of affine connection.Sov. Math. 27, 1 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1983, 1(248), 55–61. MR 0694014
Reference: [15] Mikeš, J., Starko, G. A.: K-concircular vector fields and holomorphically projective mappings on Kählerian spaces.Circ. Mat. di Palermo, Suppl. Rend. Circ. Mat. (Palermo) 46, II (1997), 123–127. MR 1469028
Reference: [16] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations.Palacký Univ. Publ., Olomouc, 2009. Zbl 1222.53002, MR 2682926
Reference: [17] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces.Math. J. Okayama Univ. 4 (1954), 57–78. Zbl 0057.14101, MR 0066024
Reference: [18] Petrov, A. Z.: Simulation of physical fields.In: Gravitation and the Theory of Relativity, 4–5, Kazan’ State Univ., Kazan, 1968, 7–21. MR 0285249
Reference: [19] Sakaguchi, T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure.Hokkaido Math. J. 3 (1974), 203–212. Zbl 0305.53024, MR 0370411
Reference: [20] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces.Nauka, Moscow, 1979. Zbl 0637.53020, MR 0552022
Reference: [21] Sinyukov, N. S.: Almost geodesic mappings of affinely connected and Riemannian spaces.J. Sov. Math. 25 (1984), 1235–1249. 10.1007/BF01084672
Reference: [22] Sobchuk, V. S., Mikeš, J., Pokorná, O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces.Novi Sad J. Math. 29, 3 (1999), 309–312. MR 1771008
Reference: [23] Yano, K.: Differential Geometry on Complex and Almost Complex Spaces.Pergamon Press, Oxford–London–New York–Paris–Frankfurt, 1965. Zbl 0127.12405, MR 0187181
Reference: [24] Yano, K., Bochner, S.: Curvature and Betti Numbers.Annals of Mathematics Studies 32, Princeton University Press, Princeton, 1953. Zbl 0051.39402, MR 0062505
.

Files

Files Size Format View
ActaOlom_49-2010-1_5.pdf 362.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo