Previous |  Up |  Next

Article

Title: New result on the ultimate boundedness of solutions of certain third-order vector differential equations (English)
Author: Omeike, M. O.
Author: Afuwape, A. U.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 49
Issue: 1
Year: 2010
Pages: 55-61
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions are established for ultimate boundedness of solutions of certain nonlinear vector differential equations of third-order. Our result improves on Tunc’s [C. Tunc, On the stability and boundedness of solutions of nonlinear vector differential equations of third order]. (English)
Keyword: Ultimate boundedness
Keyword: Lyapunov function
Keyword: differential equation of third order
MSC: 34B15
MSC: 34C11
idZBL: Zbl 1237.34045
idMR: MR2797523
Note: Supported by Universidad de Antioquia CODI grant # IN 568 CE. (English)
.
Date available: 2010-09-13T06:56:19Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/140737
.
Reference: [1] Afuwape, A. U.: Ultimate boundedness results for a certain system of third-order nonlinear differential equations.J. Math. Anal. Appl. 97 (1983), 140–150. MR 0721235, 10.1016/0022-247X(83)90243-3
Reference: [2] Afuwape, A. U.: Further ultimate boundedness results for a third-order nonlinear system of differential equations.Analisi Funzionale e Appl. 6 (1985), 99–100, N.I. 348–360. MR 0805225
Reference: [3] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some system of third-order nonlinear ordinary differential equations.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. MR 2124598
Reference: [4] Chukwu, E. N.: On the boundedness of solutions of third-order differential equations.Ann. Math. Pura Appl. 4 (1975), 123–149. Zbl 0319.34027, MR 0377180
Reference: [5] Ezeilo, J. O. C.: n-dimensional extensions of boundedness and stability theorems for some third-order differential equations.J. Math. Anal. Appl. 18 (1967), 394–416. Zbl 0173.10302, MR 0212298, 10.1016/0022-247X(67)90035-2
Reference: [6] Ezeilo, J. O. C.: A generalization of a boundedness theorem for a certain third-order differential equation.Proc. Cambridge Philos. Soc. 63 (1967), 735–742. MR 0213657
Reference: [7] Ezeilo, J. O. C.: On the convergence of solutions of certain system of second order equations.Ann. Math. Pura Appl. 72, 4 (1966), 239–252. MR 0203144, 10.1007/BF02414336
Reference: [8] Ezeilo, J. O. C.: Stability results for the solutions of some third and fourth-order differential equations.Ann. Math. Pura Appl. 66, 4 (1964), 233–250. Zbl 0126.30403, MR 0173831, 10.1007/BF02412444
Reference: [9] Ezeilo, J. O. C., Tejumola, H. O.: Boundedness and periodicity of solutions of a certain system of third-order nonlinear differential equations.Ann. Math. Pura Appl. 74 (1966), 283–316. MR 0204787, 10.1007/BF02416460
Reference: [10] Ezeilo, J. O. C., Tejumola, H. O.: Further results for a system of third-order ordinary differential equations.Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 143–151. MR 0425261
Reference: [11] Liapunov, A. M.: Stability of Motion.Academic Press, London, 1966. MR 0208093
Reference: [12] Meng, F. W.: Ultimate boundedness results for a certain system of third-order nonlinear differential equations..J. Math. Anal. Appl. 177 (1993), 496–509. MR 1231497, 10.1006/jmaa.1993.1273
Reference: [13] Rao, M. R. M.: Ordinary Differential Equations.Affiliated East-West Private Limited, London, 1980. Zbl 0482.34001
Reference: [14] Reissig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order.Noordhoff, Groningen, 1974.
Reference: [15] Tejumola, H. O.: A note on the boundedness and stability of solutions of certain third-order differential equations.Ann. Math. Pura Appl. 92, 4 (1972), 65–75. MR 0318615, 10.1007/BF02417936
Reference: [16] Tejumola, H. O.: On the boundedness and periodicity of solutions of certain third-order nonlinear differential equation.Ann. Math. Pura Appl. 83, 4 (1969), 195–212. MR 0262597, 10.1007/BF02411167
Reference: [17] Tiryaki, A.: Boundedness and periodicity results for a certain system of third-order nonlinear differential equations.Indian J. Pure Appl. Math. 30, 4 (1999), 361-372. Zbl 0936.34041, MR 1695688
Reference: [18] Tunc, C.: Boundedness of solutions of a certain third-order nonlinear differential equations.J. Inequal. Pure and Appl. Math. 6, 1 (2005), Art 3 1–6.
Reference: [19] Tunc, C.: On the stability and boundedness of solutions of nonlinear vector differential equations of third order.Nonlinear Analysis 70, 6 (2009), 2232–2236. Zbl 1162.34043, MR 2498299, 10.1016/j.na.2008.03.002
Reference: [20] Tunc, C., Ates, M.: Stability and boundedness results for solutions of certain third order nonlinear vector differential equations.Nonlinear Dynam. 45, 3-4 (2006), 273–281. Zbl 1132.34328, MR 2250136, 10.1007/s11071-006-1437-3
.

Files

Files Size Format View
ActaOlom_49-2010-1_6.pdf 350.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo