Previous |  Up |  Next

Article

Title: A probability density function estimation using F-transform (English)
Author: Holčapek, Michal
Author: Tichý, Tomaš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 447-458
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to propose a new approach to probability density function (PDF) estimation which is based on the fuzzy transform (F-transform) introduced by Perfilieva in [10]. Firstly, a smoothing filter based on the combination of the discrete direct and continuous inverse F-transform is introduced and some of the basic properties are investigated. Next, an alternative approach to PDF estimation based on the proposed smoothing filter is established and compared with the most used method of Parzen windows. Such an approach can be of a great value mainly when dealing with financial data, i. e. large samples of observations. (English)
Keyword: fuzzy transform
Keyword: probability density function estimation
Keyword: smoothing filter
Keyword: financial returns
MSC: 60E99
MSC: 62G07
MSC: 62G86
MSC: 91G80
idZBL: Zbl 1194.62030
idMR: MR2676082
.
Date available: 2010-09-13T16:53:34Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140760
.
Reference: [1] Ahalt, S. C., Krishnamurthy, A. K., Chen, P. K., Melton, D. E.: Competative learning algorithms for vector quantization.Neural Networks 4 (1993), 3, 277 – 290.
Reference: [2] Assenza, A., Valle, M., Verleysen, M.: A comparative study of various probabilty density estimation methods for data analysis.Internat. J. Comput. Intell. Systems 1 (2009), 2, 188–201.
Reference: [3] Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods.(Springer Series in Statistics.) Springer-Verlag, Berlin 2005. Zbl 1014.62103, MR 1964455
Reference: [4] Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models.Springer-Verlag, New York 2004. MR 2061786
Reference: [5] Kostelich, E. J., Yorke, J. A.: Noise reduction: Finding the simplest dynamical system consistent with the data.Physica D 41 (1990), 183–196. Zbl 0705.58036, MR 1049125
Reference: [6] Kuo, Hui-Hsiung: White Noise Distribution Theory.CRC Press, 1996. Zbl 0853.60001, MR 1387829
Reference: [7] McLachlan, G. J., Peel, D.: Finite Mixture Models.Wiley, New York 2000. Zbl 0963.62061, MR 1789474
Reference: [8] Nachtegael, M., Weken, D. Van der, Ville, D. Van De, Kerre, E. E., eds.: Fuzzy Filters for Image Processing.(Studies in Fuzziness and Soft Computing.) Springer-Verlag, 2003.
Reference: [9] Parzen, E.: On estimation of a probabilty density function and mode.Ann. Math. Statist. 33 (1962), 1065–1076. MR 0143282, 10.1214/aoms/1177704472
Reference: [10] Perfilieva, I.: Fuzzy transforms: Theory and applications.Fuzzy Sets and Systems 157 (2006), 8, 993–1023. Zbl 1092.41022, MR 2218243
Reference: [11] Perfilieva, I., Valášek, R.: Fuzzy transforms in removing noise.In: Innovation in Hybrid Intelligent Systems. Springer-Verlag, Berlin – Heidelberg 2005.
Reference: [12] Silverman, B. W.: Density Estimation for Statistics and Data Analysis.Chapman & Hall/CRC, London 1986. Zbl 0617.62042, MR 0848134
Reference: [13] Simonoff, J. S.: Smoothing Methods in Statistics.Springer-Verlag, New York 1996. Zbl 0859.62035, MR 1391963
Reference: [14] Stefanini, L.: Fuzzy transforms and smooth function.In: Proc. IFSA/EUSFLAT 2009, Lisabon 2009.
.

Files

Files Size Format View
Kybernetika_46-2010-3_10.pdf 641.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo