Previous |  Up |  Next

Article

Title: Empirical estimates in stochastic optimization via distribution tails (English)
Author: Kaňková, Vlasta
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 459-471
Summary lang: English
.
Category: math
.
Summary: “Classical” optimization problems depending on a probability measure belong mostly to nonlinear deterministic optimization problems that are, from the numerical point of view, relatively complicated. On the other hand, these problems fulfil very often assumptions giving a possibility to replace the “underlying” probability measure by an empirical one to obtain “good” empirical estimates of the optimal value and the optimal solution. Convergence rate of these estimates have been studied mostly for “underlying” probability measures with suitable (thin) tails. However, it is known that probability distributions with heavy tails better correspond to many economic problems. The paper focuses on distributions with finite first moments and heavy tails. The introduced assertions are based on the stability results corresponding to the Wasserstein metric with an “underlying” $ {\cal L}_{1}$ norm and empirical quantiles convergence. (English)
Keyword: stochastic programming problems
Keyword: stability
Keyword: Wasserstein metric
Keyword: ${\cal L}_{1}$ norm
Keyword: Lipschitz property
Keyword: empirical estimates
Keyword: convergence rate
Keyword: exponential tails
Keyword: heavy tails
Keyword: Pareto distribution
Keyword: risk functionals
Keyword: empirical quantiles
MSC: 60B10
MSC: 90C15
idZBL: Zbl 1225.90092
idMR: MR2676083
.
Date available: 2010-09-13T16:55:43Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140761
.
Reference: [1] Dai, L., Chen, C. H., Birge, J. R.: Convergence properties of two-stage stochastic programming.J. Optim. Theory Appl. 106 (2000), 489–509. Zbl 0980.90057, MR 1797371, 10.1023/A:1004649211111
Reference: [2] Dupačová, J., Wets, R. J.-B.: Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems.Ann. Statist. 16 (1984), 1517–1549. MR 0964937, 10.1214/aos/1176351052
Reference: [3] Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the sample distribution function and the classical multinomial estimate.Ann. Math. Statist. 56 (1956). 642–669. MR 0083864, 10.1214/aoms/1177728174
Reference: [4] Henrion, R., Römisch, W.: Metric regularity and quantitative stability in stochastic programs with probability constraints.Math. Programming 84 (1999), 55–88. MR 1687280
Reference: [5] Hoeffding, W.: Probability inequalities for sums of bounded random variables.J. Amer. Statist. Assoc. 58 (1963), 301, 13–30. Zbl 0127.10602, MR 0144363, 10.1080/01621459.1963.10500830
Reference: [6] Kaniovski, Y. M., King, A. J., Wets, R. J.-B.: Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems.Ann. Oper. Res. 56 (1995), 189–208. Zbl 0835.90055, MR 1339792, 10.1007/BF02031707
Reference: [7] Kaňková, V.: Optimum solution of a stochastic optimization problem with unknown parameters.In: Trans. Seventh Prague Conference, Academia, Prague 1977, pp. 239–244. MR 0519478
Reference: [8] Kaňková, V.: An approximative solution of stochastic optimization problem.In: Trans. Eighth Prague Conference, Academia, Prague 1978, pp. 349–353.
Reference: [9] Kaňková, V.: On the stability in stochastic programming: the case of individual probability constraints.Kybernetika 33 (1997), 5, 525–546. MR 1603961
Reference: [10] Kaňková, V.: Unemployment problem, restructuralization and stochastic programming.In: Proc. Mathematical Methods in Economics 1999 (J. Plešingr, ed.), Czech Society for Operations Research and University of Economics Prague, Jindřichův Hradec, pp. 151–158.
Reference: [11] Kaňková, V., Šmíd, M.: On approximation in multistage stochastic programs: Markov dependence.Kybernetika 40 (2004), 5, 625–638. MR 2121001
Reference: [12] Kaňková, V., Houda, M.: Empirical estimates in stochastic programming.In: Proc. Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), Matfyzpress, Prague 2006, pp. 426–436.
Reference: [13] Kaňková, V.: Empirical Estimates via Stability in Stochastic Programming.Research Report ÚTIA AV ČR No. 2192, Prague 2007.
Reference: [14] Kaňková, V.: Multistage stochastic programs via autoregressive sequences and individual probability constraints.Kybernetika 44 (2008), 2, 151–170. MR 2428217
Reference: [15] Klebanov, L. B.: Heavy Tailed Distributions.Matfyzpress, Prague 2003.
Reference: [16] Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its application to Tokyo stock markt.Management Sci. 37 (1991), 5, 519–531. 10.1287/mnsc.37.5.519
Reference: [17] Kotz, S., Balakrishnan, N., Johnson, N. L.: Continuous Multiviariate Distributions.Volume 1: Models and Applications. Wiley, New York 2000. MR 1788152
Reference: [18] Kozubowski, T. J. , Panorska, A. K., Rachev, S. T. : Statistical issues in modeling stable portfolios.In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 131–168.
Reference: [19] Homen de Mello, T.: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling.SIAM J. Optim. 19 (2009), 2, 524–551.
Reference: [20] Meerschaert, M. M., Scheffler, H.-P.: Portfolio modeling with heavy tailed random vectors.In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 595–640.
Reference: [21] Omelchenko, V.: Stable Distributions and Application to Finance.Diploma Thesis (supervisor L. Klebanov), Faculty of Mathematics and Physics, Charles University Prague, Prague 2007.
Reference: [22] Pflug, G. Ch.: Scenario tree generation for multiperiod financial optimization by optimal discretization.Math. Program. Ser. B 89 (2001), 251–271. MR 1816503, 10.1007/PL00011398
Reference: [23] Pflug, G. Ch.: Stochastic optimization and statistical inference.In: Stochastic Programming (Handbooks in Operations Research and Management Science, Vol. 10, A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 427–480. MR 2052759
Reference: [24] Pflug, G. Ch., Römisch, W.: Modeling Measuring and Managing Risk.World Scientific Publishing Co. Pte. Ltd, New Jersey, 2007. MR 2424523
Reference: [25] Prékopa, A.: Probabilistic programming.In: Stochastic Programming, (Handbooks in Operations Research and Managemennt Science, Vol. 10, (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 267–352. MR 2051791
Reference: [26] Römisch, W., Schulz, R.: Stability of solutions for stochastic programs with complete recourse.Math. Oper. Res. 18 (1993), 590–609. MR 1250562, 10.1287/moor.18.3.590
Reference: [27] Römisch, W.: Stability of stochastic programming problems.In: Stochastic Programming, Handbooks in Operations Research and Managemennt Science, Vol 10 (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483–554. MR 2052760
Reference: [28] Salinetti, G., Wets, R. J. B.: On the convergence of closed-valued measurable multifunctions.Trans. Amer. Math. Soc. 266 (1981), 1, 275–289. Zbl 0501.28005, MR 0613796
Reference: [29] Schulz, R.: Rates of convergence in stochastic programs with complete integer recourse.SIAM J. Optim. 6 (1996), 4, 1138–1152. MR 1416533, 10.1137/S1052623494271655
Reference: [30] Serfling, J. R.: Approximation Theorems of Mathematical Statistics.Wiley, New York 1980. Zbl 1001.62005, MR 0595165
Reference: [31] Shapiro, A.: Quantitative stability in stochastic programming.Math. Program. 67 (1994), 99–108. Zbl 0828.90099, MR 1300821, 10.1007/BF01582215
Reference: [32] Šmíd, M.: The expected loss in the discretization of multistage stochastic programming problems-estimation and convergence rate.Ann. Oper. Res. 165 (2009), 29–45. MR 2470981, 10.1007/s10479-008-0355-9
Reference: [33] Shorack, G. R., Wellner, J. A.: Empirical Processes and Applications to Statistics.Wiley, New York 1986. MR 0838963
Reference: [34] Wets, R. J.-B.: A Statistical Approach to the Solution of Stochastic Programs with (Convex) Simple Recourse.Research Report, University Kentucky, USA 1974.
.

Files

Files Size Format View
Kybernetika_46-2010-3_11.pdf 500.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo