Previous |  Up |  Next

Article

Title: On the central paths and Cauchy trajectories in semidefinite programming (English)
Author: López, Julio
Author: Ramírez C., Héctor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 524-535
Summary lang: English
.
Category: math
.
Summary: In this work, we study the properties of central paths, defined with respect to a large class of penalty and barrier functions, for convex semidefinite programs. The type of programs studied here is characterized by the minimization of a smooth and convex objective function subject to a linear matrix inequality constraint. So, it is a particular case of convex programming with conic constraints. The studied class of functions consists of spectrally defined functions induced by penalty or barrier maps defined over the real nonnegative numbers. We prove the convergence of the (primal, dual and primal-dual) central path toward a (primal, dual, primal-dual, respectively) solution of our problem. Finally, we prove the global existence of Cauchy trajectories in our context and we recall its relation with primal central path when linear semidefinite programs are considered. Some illustrative examples are shown at the end of this paper. (English)
Keyword: semidefinite programming
Keyword: central paths
Keyword: penalty/barrier functions
Keyword: Riemannian geometry
Keyword: Cauchy trajectories
MSC: 53C25
MSC: 90C22
MSC: 90C51
idZBL: Zbl 1225.90097
idMR: MR2676088
.
Date available: 2010-09-13T17:02:50Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140766
.
Reference: [1] Alvarez, F., Bolte, J., Brahic, O.: Hessian Riemannian flows in convex programming.SIAM J. Control Optim. 43 (2004), 2, 477–501. MR 2086170, 10.1137/S0363012902419977
Reference: [2] Alvarez, F., López, J., C., H. Ramírez: Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and classification by hyperplanes.To appear in Optimization Methods and Software.
Reference: [3] Auslender, A., C., H. Ramírez: Penalty and barrier methods for convex semidefinite programming.Math. Methods Oper. Res. 43 (2006), 2, 195–219. MR 2264746
Reference: [4] Bayer, D. A., Lagarias, J. C.: The nonlinear geometry of linear programming I.Affine and projective scaling trajectories. Trans. Amer. Math. Soc. 314 (1989), 499–526. Zbl 0671.90045, MR 1005525
Reference: [5] Neto, J. X. Cruz, Ferreira, O. P., Oliveira, P. R., Silva, R. C. M.: Central paths in semidefinite programming, generalized proximal point method and Cauchy trajectories in Riemannian manifolds.J. Optim. Theory Appl. 1 (2008), 1–16.
Reference: [6] Goemans, M. X.: Semidefinite programming in combinatorial optimization.Lectures on Mathematical Programming (ismp97). Math. Programming Ser. B 79 (1997), 1–3, 143–161. Zbl 0887.90139, MR 1464765, 10.1007/BF02614315
Reference: [7] Dieudonné, J. A.: Foundations of Modern Analysis.Academic Press, New York 1969. Zbl 0708.46002, MR 0349288
Reference: [8] Drummond, L. M. Graña, Peterzil, Y.: The central path in smooth convex semidefinite programming.Optimization 51 (2002), 207–233. MR 1928037, 10.1080/02331930290019396
Reference: [9] Halická, E., Klerk, E. de, Roos, C.: On the convergence of the central path in semidefinite optimization.SIAM J. Optim. 12 (2002), 4, 1090–1099. MR 1922510, 10.1137/S1052623401390793
Reference: [10] Iusem, A. N., Svaiter, B. F., Neto, J. X. da Cruz: Central paths, generalized proximal point methods and Cauchy trajectories in Riemannian manifolds.SIAM J. Control Optim. 37 (1999), 2, 566–588. MR 1670649, 10.1137/S0363012995290744
Reference: [11] Klerk, E. de: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications.(Applied Optimization 65.) Kluwer Academic Publishers, Dordrecht 2002. Zbl 0991.90098, MR 2064921
Reference: [12] Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementary problem in symmetic matrices.SIAM J. Optim. 7 (1997), 86–125. MR 1430559, 10.1137/S1052623494269035
Reference: [13] Lewis, A. S.: Convex Analysis on the Hermitian Matrices.SIAM J. Optim., 6 (1996), 1, 164–177. Zbl 0849.15013, MR 1377729, 10.1137/0806009
Reference: [14] Lewis, A. S., Sendov, H. S.: Twice differentiable spectral functions.SIAM J. Matrix Anal. Appl. 23 (2001), 2, 368–386. Zbl 1053.15004, MR 1871318, 10.1137/S089547980036838X
Reference: [15] Lojasiewicz, S.: Ensembles Semi-analitiques.Inst. Hautes Études Sci., Bures-sur-Yvette 1965.
Reference: [16] Petersen, P.: Riemannian Geometry.Springer-Verlag, New York 1998. MR 1480173
Reference: [17] Seeger, A.: Convex analysis of spectrally defined matrix functions.SIAM J. Optim. 7 (1997), 679–696. Zbl 0890.15018, MR 1462061, 10.1137/S1052623495288866
Reference: [18] Shapiro, A.: On Differentiability of Symmetric Matrix Valued Functions.Technical Report, School of Industrial and Systems Engineering, Georgia Institute of Technology, 2002.
Reference: [19] Todd, M.: Semidefinite optimization.Acta Numer. 10 (2001), 515–560. Zbl 1105.65334, MR 2009698, 10.1017/S0962492901000071
Reference: [20] Vandenberghe, L., Boyd, S.: Semidefinite programming.SIAM Rev. 38 (1996), 1, 49–95. Zbl 1151.90512, MR 1379041, 10.1137/1038003
.

Files

Files Size Format View
Kybernetika_46-2010-3_16.pdf 523.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo