Previous |  Up |  Next

Article

Title: A stochastic programming approach to managing liquid asset portfolios (English)
Author: Raubenheimer, Helgard
Author: Kruger, Machiel F.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 536-547
Summary lang: English
.
Category: math
.
Summary: Maintaining liquid asset portfolios involves a high carry cost and is mandatory by law for most financial institutions. Taking this into account a financial institution's aim is to manage a liquid asset portfolio in an “optimal” way, such that it keeps the minimum required liquid assets to comply with regulations. In this paper we propose a multi-stage dynamic stochastic programming model for liquid asset portfolio management. The model allows for portfolio rebalancing decisions over a multi-period horizon, as well as for flexible risk management decisions, such as reinvesting coupons, at intermediate time steps. We show how our problem closely relates to insurance products with guarantees and utilize this in the formulation. We will discuss our formulation and implementation of a multi-stage stochastic programming model that minimizes the down-side risk of these portfolios. The model is back-tested on real market data over a period of two years (English)
Keyword: stochastic programming
Keyword: portfolio optimization
Keyword: liquid assets
MSC: 90C15
MSC: 91G10
MSC: 91G80
MSC: 97M30
idZBL: Zbl 1201.90142
idMR: MR2676089
.
Date available: 2010-09-13T17:03:40Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140767
.
Reference: [1] BESA (Bond exchange of South Africa): An introduction to the BEASSA zero coupon yield curves.Bond exchange of South Africa. Johannesburg 2003.
Reference: [2] BESA (Bond exchange of South Africa): The BEASSA zero coupon yield curves: Technical specifications.Bond exchange of South Africa. Johannesburg 2003.
Reference: [3] Dempster, M. A. H., Germano, M., Madova, E. A., Rietbargen, M. I., Sandrini, F., Scrowston, M.: Managing guarantees.J. Portfolio Management 32 (2006), 51–61. 10.3905/jpm.2006.611803
Reference: [4] Dempater, M. A. H., Pflug, G., Mitra, G., eds.: Quantitative Fund Management.Chapman & Hall/CRC Financial Mathematics Series, New York 2008.
Reference: [5] Hoyland, K., Wallace, S. W.: Generating scenario trees for multistage decision problems.Management Sci. 47 (2001), 2, 295–307. 10.1287/mnsc.47.2.295.9834
Reference: [6] Kouwenberg, R.: Scenario generation and stochastic programming models for asset liability management.Europ. J. Oper. Res. 134 (2001), 279–292. Zbl 1008.91050, MR 1853618, 10.1016/S0377-2217(00)00261-7
Reference: [7] Mulvey, J. M., Pauling, W. R., Madey, R. E.: Advantages of multiperiod portfolio models.J. Portfolio Management 29 (2001), 35–45. 10.3905/jpm.2003.319871
Reference: [8] Shapiro, A., Dentcheva., D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory.MPS/SIAM Ser. Optim. 9, Philadelphia 2009. MR 2562798
Reference: [9] South Africa: Banks Act, No. 94 of 1990 (As amended).1990. Pretoria: Government Printer. [WEB:]http://www.reservebank.co.za.
Reference: [10] South Africa: Regulations Relating to Banks. (Proclamation No. R. 1112, 2000).2000. Government Gazette, 21726, Nov. 8. (Regulations Gazette No. 6917.) [WEB:]http://www.reservebank.co.za.
Reference: [11] Zenios, S. A.: Practical Financial Optimization: Decision Making for Financial Engineers.Blackwell Publishing, 2008. Zbl 1142.91008, MR 2381682
Reference: [12] Zenios, S. A., Ziemba, W. T.: Handbook of Asset and Liability Management: Volume 2.Elsevier, North-Holland, Amsterdam 2007.
.

Files

Files Size Format View
Kybernetika_46-2010-3_17.pdf 677.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo