Title:
|
On hyperplanes and semispaces in max–min convex geometry (English) |
Author:
|
Nitica, Viorel |
Author:
|
Sergeev, Sergeĭ |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
46 |
Issue:
|
3 |
Year:
|
2010 |
Pages:
|
548-557 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry. (English) |
Keyword:
|
tropical convexity |
Keyword:
|
fuzzy algebra |
Keyword:
|
separation |
MSC:
|
08A72 |
MSC:
|
14T05 |
MSC:
|
52A01 |
MSC:
|
52A30 |
idZBL:
|
Zbl 1193.14076 |
idMR:
|
MR2676090 |
. |
Date available:
|
2010-09-13T17:04:39Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140768 |
. |
Reference:
|
[1] Birkhoff, G.: Lattice Theory.American Mathematical Society, Providence, RI 1993. Zbl 0537.06001 |
Reference:
|
[2] Cechlárová, K.: Eigenvectors in bottleneck algebra.Linear Algebra Appl. 175 (1992), 63–73. MR 1179341 |
Reference:
|
[3] Cohen, G., Gaubert, S., Quadrat, J. P., Singer, I.: Max-plus convex sets and functions.In: Idempotent Mathematics and Mathematical Physics (G. Litvinov and V. Maslov, eds.), AMS, Providence 2005, pp. 105–129. E-print arXiv:math/0308166. Zbl 1093.26005, MR 2149000 |
Reference:
|
[4] Develin, M., Sturmfels, B.: Tropical convexity.Documenta Math. 9 (2004), 1–27. E-print arXiv:math/0308254. Zbl 1054.52004, MR 2054977 |
Reference:
|
[5] Gaubert, S., Katz, R.: Max-plus convex geometry.In: Lecture Notes in Computer Science 4136, Springer, New York 2006. pp. 192–206. Zbl 1134.52303, MR 2281601, 10.1007/11828563_13 |
Reference:
|
[6] Gaubert, S., Sergeev, S.: Cyclic projectors and separation theorems in idempotent convex geometry.J. Math. Sci. 155 (2008), 6, 815–829. E-print arXiv:math/0706.3347. Zbl 1173.47045, MR 2366235, 10.1007/s10958-008-9243-8 |
Reference:
|
[7] Gavalec, M.: Periodicity in Extremal Algebras.Gaudeamus, Hradec Králové 2004. |
Reference:
|
[8] Gavalec, M., Plávka, J.: Strong regularity of matrices in general max-min algebra.Linear Algebra Appl. 371 (2003), 241–254. MR 1997373 |
Reference:
|
[9] Golan, J.: Semirings and Their Applications.Kluwer, Dordrecht 2000. Zbl 0947.16034, MR 1746739 |
Reference:
|
[10] Litvinov, G. L., Maslov, V. P., Shpiz, G. B.: Idempotent functional analysis: an algebraic approach.Math. Notes 69 (2001), 5, 758–797. Zbl 1017.46034, MR 1846814 |
Reference:
|
[11] Nitica, V.: The structure of max-min hyperplanes.Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.08.022. Zbl 1180.52005, MR 2566489 |
Reference:
|
[12] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces.I. Optimization 56 (2007), 171–205. Zbl 1127.52001, MR 2288512, 10.1080/02331930600819852 |
Reference:
|
[13] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces.II. Optimization 56 (2007), 293–303. Zbl 1127.52001, MR 2326254, 10.1080/02331930601123031 |
Reference:
|
[14] Nitica, V., Singer, I.: Contributions to max-min convex geometry.I. Segments. Linear Algebra Appl. 428 (2008), 7, 1439–1459. Zbl 1134.52300, MR 2388630, 10.1016/j.laa.2007.09.032 |
Reference:
|
[15] Nitica, V., Singer, I.: Contributions to max-min convex geometry.II. Semispaces and convex sets. Linear Algebra Appl. 428 (2008), 8–9, 2085–2115. Zbl 1134.52300, MR 2401643 |
Reference:
|
[16] Sergeev, S. N.: Algorithmic complexity of a problem of idempotent convex geometry.Math. Notes 74 (2003), 6, 848–852. Zbl 1108.52301, MR 2054008, 10.1023/B:MATN.0000009021.18823.52 |
Reference:
|
[17] Zimmermann, K.: A general separation theorem in extremal algebras.Ekonom.-Mat. Obzor 13 (1977), 179–201. Zbl 0365.90127, MR 0453607 |
Reference:
|
[18] Zimmermann, K.: Convexity in semimodules.Ekonom.-Mat. Obzor 17 (1981), 199–213. Zbl 0477.52002, MR 0629908 |
. |