Previous |  Up |  Next

Article

Title: Information contained in design points of experiments with correlated observations (English)
Author: Pázman, Andrej
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 4
Year: 2010
Pages: 771-783
Summary lang: English
.
Category: math
.
Summary: A random process (field) with given parametrized mean and covariance function is observed at a finite number of chosen design points. The information about its parameters is measured via the Fisher information matrix (for normally distributed observations) or using information functionals depending on that matrix. Conditions are stated, under which the contribution of one design point to this information is zero. Explicit expressions are obtained for the amount of information coming from a selected subset of a given design. Relations to some algorithms for optimum design of experiments in case of correlated observations are indicated. (English)
Keyword: optimal sampling design
Keyword: spatial statistics
Keyword: random process
Keyword: nonlinear regression
Keyword: information matrix
MSC: 62B15
MSC: 62K05
MSC: 62M30
idZBL: Zbl 1201.62105
idMR: MR2722100
.
Date available: 2010-10-22T05:31:47Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140783
.
Reference: [1] Brimkulov, U. N., Krug, G. V., Savanov, V. L.: Numerical construction of exact experimental designs when the measurements are correlated.(In Russian.) Industr. Laboratory 36 (1980), 435–442.
Reference: [2] Cressie, N. A. C.: Statistics for Spatial Data.Second edition. Wiley, New York 1993. MR 1239641
Reference: [3] Fedorov, V. V.: Design of spatial experiments: model fitting and prediction.In: Handbook of Statistics (S. Gosh and C. R. Rao, eds.), Vol. 13, Elsevier, Amsterdam 1996, pp. 515–553. Zbl 0910.62071, MR 1492578
Reference: [4] Fedorov, V. V., Müller, W. G.: Optimum design for correlated fields via covariance kernel expansions.In: Model Oriented Data and Analysis 8, (J. Lopez-Fidalgo, J. H. Rodriguez-Diaz, and B. Torsney, eds.), Physica-Verlag, Heidelberg 2007, pp. 57–66. MR 2409030
Reference: [5] Harville, D. A.: Matrix Algebra from a Statistician’s Perspective.Springer, New York 1997. Zbl 0881.15001, MR 1467237
Reference: [6] Müller, W. G.: Collecting Spatial Data.Third edition. Springer, Heidelberg 2007. Zbl 1266.62048
Reference: [7] Müller, W. G., Pázman, A.: An algorithm for the computation of optimum designs under a given covariance structure.Comput. Statist. 14 (1999), 197–211. MR 1712010
Reference: [8] Müller, W. G., Pázman, A.: Measures for designs in experiments with correlated errors.Biometrika 90 (2003), 423–445. Zbl 1035.62077, MR 1986657, 10.1093/biomet/90.2.423
Reference: [9] Näther, W.: Exact designs for regression models with correlated errors.Statistics 16 (1985), 479–484. MR 0803486, 10.1080/02331888508801879
Reference: [10] Pázman, A.: Criteria for optimal design of small-sample experiments with correlated observations.Kybernetika 43 (2007), 453–462. Zbl 1134.62055, MR 2377923
Reference: [11] Pukelsheim, F.: Optimal Design of Experiments.Wiley, New York 1993. Zbl 0834.62068, MR 1211416
Reference: [12] Sacks, J., Ylvisaker, D.: Design for regression problems with correlated errors.Ann. Math. Statist. 37 (1966), 66–84. MR 0192601, 10.1214/aoms/1177699599
Reference: [13] Zimmerman, D. L.: Optimum network design for spatial prediction, covariance parameter estimation and empirical prediction.Environmetrics 17 (2006), 635–652. MR 2247174, 10.1002/env.769
.

Files

Files Size Format View
Kybernetika_46-2010-4_12.pdf 251.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo